動機づけと集中力

サッカーに限りませんが、試合開始早々の失点や、前後半の終了間際の失点、あるいは0対1から1対1に追いついた直後の失点など、点数が入りにくいサッカーでは、ことさらこのような場面での失点は試合を分けることになります。

我が母校の悪い癖は、比較的このような失点が多いことです。どうしたらこのような失点を減らすことができるのか。今回の『勝利へのメンタル・トレーニング』という本を拝読させて頂き、特に重要なことはコーチング(動機づけ)と集中力ではないかと思いました。

この本は1992年が初版なので、30年以上前の本になりますが、基本的なこと、基礎的なことはそれ程変わらないのではないかと思い購入しました。特に集中力はスポーツだけでなく、すべてにおいて重要なものであり、今までに考えたこともないような事を考えることができ、とても有意義だったなと思います。

著者:江川玟成

初版発行:1992年7月

出版:チクマ秀版社

ブログは、動機づけと集中力に関する件を取り上げています。

目次

第一章 スポーツにおける技術向上の条件

1 スポーツにまつわる誤解

2 技術向上の基本原則

第二章 試合に勝つための条件

1 勝敗を決めるものは

2 試合に勝つための事前準備

3 大会当日に配慮すべきことがら

第三章 監督・コーチの役割

1 スポーツ指導の方法原理

2 選手にやる気をおこさせるには

3 大会前および大会当日の監督・コーチの役割

第四章 競技中の心と技の工夫

1 競技中の心のもち方

2 競技中の技はここを!

第五章 集中力を高めるには

1 集中の心理

2 集中力アップの工夫と方法

第六章 あがりの防止対策・克服法

1 なぜ“あがる”のか

2 日ごろの工夫による防止対策

3 自律訓練法

第七章 イメージ・トレーニング

1 イメージ・トレーニングの方法

2 イメージ・トレーニングの効果

敗因診断表

性格の自己チェック尺度

メンタル・トレーニング・チェックリスト

第三章 

2.選手にやる気を起こさせるには

1)動機づけの方法

外発的動機づけ

-ほめる・認める、叱る、激励する、競争場面を設定する、慰めるなど。

内発的動機づけ

-目的意識をもたせる、課題意識をもたせる、問題意識・危機感をもたせる、感謝や恩返しの気持ちをもたせる、プライドをもたせる、責任感をもたせる、反省させる、創意工夫の態度をみにつけさせる、ライバルをもたせるなど。

自己動機づけ

-自分で自覚してやる気を燃やすよう工夫する。指導者は部員・選手に対してこの点についても指導・助言をする必要がある。

2)目的意識

細かな目標設定

-年間目標⇒月間目標⇒週間目標のように、自らが立てた目標を達成するという習慣を身につける。

年間目標は抱負というかたちで各個人がミーティング内で一言ずつ発表するという方法もある。

月間目標は各部員に紙に書いて提出させるという方法も有効である。

-週間目標や日々の目標は、一人ひとりが問題意識を高めて心掛けることが重要である。

チーム目標

指導者を中心にメンバー全員で話し合って決めるという方法も良い。これは部員自身の目標設定を考える上でチーム目標とのつながりを意識することができるからである。

方向目標と到達目標

-方向目標は、「今よりも、もっと~になりたい」とか「これまでよりも、もっと~をできるようにしよう」といったものである。

-到達目標は、特定の具体的な目標である。たとえば、「1試合に10本以上のシュートをする」、「サッカーゴール内のシュート比率50%以上を目指す」、「ペナルティエリア内でシュートをうたせない」などが考えられる。

-一般的には到達目標の方が、概して、練習意欲を高めやすい。

-これらの目標設定には高からず低からずということが重要であり、指導者の助言が求められる

目標の効果

-練習意欲が高まる。

-練習が楽しくなり、きつい練習にも耐えられるようになる。

スポーツを通じての目標設定の体験は、課題改善や問題解決に対する取り組み姿勢の育成にもつながる。

3)ライバルの存在

-競争心という人間心理を利用した動機づけには、よきライバルの存在が考えられる。同じチーム内に限らず他のチームの同じポジションの優秀な選手がライバルとなることもある。

-ライバルは個人だけでなく、チームやクラブとしてのライバルも重要である。切磋琢磨するライバルは成長の礎となり、また目標をもつということにも通じる。

4)問題意識と危機感

-部員・選手の中には問題意識や危機感をもつ者もいるが、特に年齢が低ければ低いほど、全員がもっているということはない。このような状況では、指導者の意図的な働きかけが求められるが以下のようなアプローチがある。

A. 練習方法、練習態度、試合内容などを反省する。

B. ミーティングを開催し、みんなで自由に話し合う。

C. 一人ひとりレポートを書かせ提出させる。

5)指導者として

●話し合いの場での助言や示唆は、部員・選手同士の話し合いの様子をよく観察した上で、特にうまく進んでいない状況で、分かりやすく、納得できるように指導してあげることが求められる。

レポートを書かせる場合は、必ずコメントを書いて返すようにする

●ほめ方、𠮟り方は非常に難しいが、効果的に伝えることができれば大きなきっかけになる。大切なことはよく観察すること、客観的であること、相手の気持ちを尊重することである。

指導者自身の人間性が原点ともいえる。親切で責任感が強く、一生懸命で人間味があるという人柄であれば、ほとんどの部員・選手は指導者の人間性に共感し、信じてついてくるものである。

第五章 集中力を高めるには

1 集中力の心理

1)集中力とはなにか

●「集中力」とは、ある一定時間、ある特定のことがらに注意や意欲をかたむけ、それに向かって一生懸命に頑張り通して、効率を高め、好成績をだす精神的な機能ないし能力という意味である。つまり、集中力は「意欲の強さと持続性」、「注意集中の強さと持続性」と捉えることができる

●意欲が弱いのは論外であるが、意欲が強すぎるのも問題である。急ぎすぎたり、慌てたり、いらついたりと感情的になる傾向がみられ、緊張が高まり冷静さも失いやすくなる。また、自分の能力を過信してしまうこともある。

意欲と緊張は強すぎず、弱すぎずということが望ましい態度であり、全体に注意を向けながら、特定のことに意識を向ける。求めれるのは平常心である。

「平常心」は心が偏らないように真ん中に置いて、心を静かにゆるがせて、そのゆるぎが一瞬たりとも留まることのない、常に流動自在な心の状態は、また望ましい注意配分の状態であるといえる

●集中力が高いとは、適度の意欲と偏らずにバランスのとれた注意集中とが、目的に応じて一定時間持続できることを指す。一方、集中力が低いとは、意欲が空回りしたり、意欲が弱すぎたり、注意が偏ったり、散漫になったりすることを指す。

●集中力が高い時は、目的にかなった以下のような望ましい動作・反応ができるようになる。

反応潜時の短縮:合図に対してすばやくスタートできる。「~しよう」と思ってすばやく動作を起こせるなど。

反応速度の増加:目的動作を短い時間で遂行できるなど。

反応量の増大:飛距離がのびる、より高く飛べる、より重いものを挙げることができるなど。

誤反応の抑制:凡ミスをしない、大事な場面や困難な場面でもミスをしない。

2)集中力発揮の妨害要因

●集中力は個人差がある。しかし集中力発揮は身体的・心理的・環境的要因の三種類の要因によって左右される。

身体的要因:体の不調、病気、睡眠不足、疲労、ケガ、薬物摂取、空腹・満腹、尿意・便意など。

心理的要因:気がかりなこと・悩み事がある、勝敗を意識しすぎる、慎重になりすぎる、責任感が強すぎる、油断・安心する、慌てる、焦る、ミスを気にする、予期不安(「負けるのではないか」などと心配になる)、気後れ、気力負け、気合不足など。

環境的要因:グラウンドの状態がよくない、騒音、観客の声援、光線が強すぎる・薄暗い、風が強い、高温多湿、大観衆、不慣れな場所など。

2 集中力アップの工夫と方法

1)集中力アップは日常生活から

●集中力の養成・アップは日常生活からである。常日頃からの心がけが大切である。

●第一に、日頃、何かやろうと思ったら、できるだけ速やかに実行に移るよう心掛けることである。

●第二に、日頃から気がかりになっていることは、できるだけ速やかに解決しておくことである。「そのうち、なんとかなるだろう」などと甘く考えてはいけない。ルーズな対応は集中力の養成にはマイナスである。

●第三に、常日頃、自分の感情・気持ちを、自分でコントロールするよう心掛けることである。日頃養ったセルフ・コントロールの能力は、試合の場面にも生かされ集中力の発揮に役立つ。

●第四に、勉強、仕事、囲碁・将棋などでの精神集中や粘りの体験は、試合や競技にも役に立つと考えられる。

2)練習を通して集中力を養う

●日頃の練習は技術向上だけでなく、集中力アップにも役立つものでなくてはならない。第一に練習と試合を区別しないことで大切である。つまり、常に試合を想定して練習に取り組むことが集中力アップやプレッシャーの克服にもつながる

●第二の方法は、「ピークパフォーマンス法」と言われているものである。これは練習や試合で経験した高度の集中力発揮の体験を覚えておくよう心掛けることである。その時に、どのような心構えや工夫をしたのかが重要である。

●第三に、大会前に試合に向けての意欲と勝利への執念を徐々に高めるようにもっていく。

●第四に、焦りや不安、あがりなどの問題をチーム内でよく話合って準備しておくことも必要である。

3)心理学的な集中力アップ法

●これまで、スポーツ心理学において、数多くの集中力トレーニング法が開発されてきた。

リラクゼーション:身体的・精神的にリラックスした状態を作り出すことにより、必要なことがらに精神を集中する余裕を生みだす。

作業法:グリッドエクササイズ(格子のなかに書かれた二桁の数字を捜し出す)、ゆっくりとしたバランス運動、振子のテストなど、非常に努力や注意力を要する作業を訓練して、自分の意図することに注意を持続させる能力を高めることを狙っている。

呼吸法:禅やヨガなどの呼吸法を修得させ、呼吸に注意を集中させることを通して、外部刺激や雑念に妨げられない態度をつくっていく。

バイオフィードバック法:バイオフィードバック(生体情報を本人に知らせる手法)により、精神が特定の対象に集中しているときの心身の状態の特徴をとらえさせる。これにより、いつでもその状態を自分で作り出せるようになることを、狙っている。

凝視法:何か特定の物体を長時間注視しつづけさせることにより、注意の持続力を高めることを狙っている。

妨害法:さまざまな妨害刺激のもとで作業をさせることにより、注意の持続力を高める。

自己分析法:練習や試合でどのようなかたちで注意がそれやすいか、集中力をダウンさせてしまうのかを、自己分析させ、自分の注意行動パターンの特徴を把握させるとともに、それに対する対策を考えさせる。

キーワード法:注意を向けるべき刺激・対象・動き・心構えなどを示す言葉を、あらかじめキーワードとしてきめておき(「平常心でのぞむ!」「勝ちを急ぐな!」など)、練習中に注意が逸れそうになったり、精神的な乱れがでそうになったときに、そのキーワードを頭の中で、1、2度唱えるようにする。この反復練習により、試合・競技中にも同じようにやれば、キーワードに誘導されて望ましい精神状態が維持され、思う通りのプレーができるようになる。

イメージ・トレーニング:大会当日に会場に着くまでの間にやるべきことがら、会場に着いてからやるべきことがらなどを、あらかじめイメージ・トレーニングによりリハーサルしておく、こうして、実際にそれらの各場面に自然に適応できるようになる、つまり集中力がかき乱されずにすむ。

ピークパフォーマンス法:自己最高の成績をあげたときの自分の精神状態や実際のプレー・演技のやり方を思い出したり、イメージ化したりすることにより、実際にもそのような望ましい心身の状態、つまり高度に集中力が発揮される状態を作り出せるようにしておく。

達観法:試合に対して不安を抱いたり、勝敗のことを考えすぎたりしても、何の役にもたたないばかりか、かえってマイナスになることを理解させ、いわゆる開き直りの心境を切り開かせる。これにより、集中力が発揮されやすくなる。

アファメーション:アファメーション、つまり自己肯定により、不安を取り去って自信を回復することにより、集中力発揮を狙っている。

肯定的思考法:ものごとを悲観的にではなく、良い方向へと楽観的に考える習慣を作っていくことにより、いたずらに心配したり、迷ったりするのを防ぐ。その結果集中力が発揮されることになる。

過重学習法:さまざまな困難な競技場面を想定した練習を十二分に積むことにより、いざという時に戸惑わないようにしておく。いわば、臨機応変の対処ができるよう、いろんな場面での対応を反復練習しておく。

ボーアとアインシュタイン6

著者:マンジット・クマール

発行:2013年3月

出版:新潮社

目次は“ボーアとアインシュタイン1”を参照ください。

41.アインシュタインの統一場理論とEPR論文

“相補性”は「デジタル大辞泉」によると『電子の位置と速さ、光の粒子性と波動性のように、不確定性原理から二つの量が同時に測定できない関係にある現象を互いに相補的であるといい、このような性質をいう』とされています。そこには人知の理解を超えたものを受け入れる柔軟性のある価値観という感じを受けます。一方、“統一場理論”の前提は実在性に立脚し必ず統合できるという信念、もしくは統合を諦めることは許されないという強迫観念も多少あったのかもしれません。そして、これが両者を分ける根本的な違いであるような気がします。

また、EPR論についても同じような印象を受けます。ひとつは「理論から導かれる結論と人間の経験」ですが、「人間の経験」という表現は枠を意識させます。さらに、実在という泥沼を回避するために、「実在を一般的に定義する必要はない」としたEPR論の主張には違和感を覚えます。

アインシュタインの「量子論のコペンハーゲン解釈と客観的実在とは両立不可能だ」という考えについては、ボーアも同意しており、その上で「量子の世界というものはない。あるのは抽象的な量子力学の記述だけである」という見解を示しました。

『19世紀にマクスウェルは、電気、磁気、光を統一して、包括的なひとつの理論構造にまとめあげた。アインシュタインはそれと同様、電磁気理論と一般相対性理論とを統一したいと考えていたのだ。彼にとって、それらふたつの理論を統一することは次に踏み出すべきステップであり、避けて通ることのできない道筋であると同時に、論理的必然でさえあった。そんな理論を作るという彼の試みはいずれも屑籠箱行になるのだが、彼がその道に最初の一歩を踏み出したのは、1925年のことだった。その後量子力学が発見されてからは、統一場理論ができれば、量子力学はその副産物として得られるだろうと考えるようになっていた。

『若い世代とのあいだに相互不信はあったものの、アインシュタインといっしょに仕事がしたいと熱望する若手はつねにいた。そんな若手のひとりがネイサン・ローゼンである。ニューヨーク生まれのローゼンは、1934年、25歳のときに、アインシュタインの助手としてマサチューセッツ工科大学(MIT)から高等研究所にやってきた。そのローゼンよりも数カ月ほど早く、ボリス・ポドルスキーが初めてアインシュタインに会ったのは、1931年、カリフォルニア工科大学(カルテック)でのことだった。そのときふたりは共著論文をひとつ書き上げた。アインシュタインはもうひとつの論文のアイデアをもっていた。その論文が、コペンハーゲン解釈に新しい側面から一撃を加え、アインシュタイン=ボーア論争の歴史に新時代を画することになるのである。

1927年と1930年の、二度のソルヴェイ会議でアインシュタインが採った路線は、不確定性原理を突き崩すことにより、量子力学には矛盾があり、それゆえ不完全であることを示すというものだった。ボーアはハイゼンベルクとパウリの協力を得てアインシュタインの思考実験という要塞を解体し、コペンハーゲン解釈を防衛することに成功した。

その後アインシュタインは、量子力学には論理的な矛盾はないものの、ボーアが言うような完全な理論ではないと考えるようになった。量子力学は完全ではなく、物理的実在を十分に捉えていないということを示すためには、これまでとは違う戦略が必要なのはわかっていた。その目的のためにアインシュタインが開発したのが、彼の考案したなかで、もっとも長く攻略に耐えることになる思考実験だった。

1935年が明けるとすぐに、アインシュタインは、ポドルスキーとローゼンを研究室に呼び、三人で数週間にわたって議論を重ね、その新しい戦略を入念に練り上げた。ポドルスキーがその議論の成果を論文として書き上げる作業を担当し、ローゼンはそのために必要な計算のほとんどを担当した。のちにローゼンが語ったところによれば、アインシュタインの担当は、「一般的な考え方、およびその意味」を明らかにすることだった。わずか四ページのその論文―アインシュタイン=ポドルスキー=ローゼン論文、略してEPR論文―は、三月末には完成し、専門誌に送付された。「物理的実在に関する量子力学の記述は完全だと考えることができるか?(Can Quantum Mechanical Description of Physical Reality Be Considered Complete?)」と題された三人の共著論文は、[Physical Realityの前にあるべき]“the”を落としたまま、5月15日に、アメリカの物理学専門誌「フィジカル・レビュー」に掲載された。タイトルに掲げた問いに対するERPの回答は、敢然たる「ノー!」だった。ERP論文は、著者のひとりにアインシュタインが含まれていたため、専門誌に掲載される前に、誰も望まないかたちで世間の注目を浴びることになった。

1935年5月4日土曜日の「ニューヨーク・タイムズ」の第十一面に、「アインシュタイン、量子論を攻撃する」という派手な見出しの記事が掲載された。「アインシュタイン教授は、科学の重要理論である量子力学を攻撃する予定だ。その理論にとって彼は祖父のような存在である。彼は、量子力学は“正しい”が、“完全”ではないと結論した」。それから三日後、「ニューヨーク・タイムズ」は、明らかに不機嫌なアインシュタインの談話を掲載した。新聞を相手取ることに不慣れではないはずのアインシュタインだったが、言わずもがなのことを言ったのだ。「科学的な問題については、それにふさわしい場でしか論じないというのが、一貫したわたしのやり方である。わたしは、こうした問題についての発表を、論文掲載に先立って一般紙で行うことに反対する」

アインシュタイン、ポドルスキー、ローゼンは発表された論文の中で、まずはじめに、実在そのものと、物理学者が理解するところの実在とを区別した。「物理理論について本格的な考察を行うときにはつねに、理論とはいっさい関係ない客観的実在と、理論のなかで用いられる物理的な概念とは、別のものだということを考慮に入れなければならない。物理的概念は、客観的実在をさせるために作られたものであり、われわれはそれらの概念を使って、自らのために客観的実在をえがき出だすのである。」それに続けてEPRは、物理理論が成功していると言えるためには、次のふたつの問いに対する答えが、無条件に「イエス」でなければならないと主張した。そのふたつとは、「その理論は正しいのか?」と「その理論によって与えられる記述は完全か?」である。

「理論が正しいかどうかは、理論から導かれる結論と人間の経験とが、どの程度合うかによって判断される」とEPRは述べた。物理学で言う「経験」は、実験や測定を意味するから、三人がここで述べたことは、物理学者なら誰でも受け入れるだろう。今日にいたるまで、実験室で行われた実験と、量子力学の理論的な予測とのあいだに矛盾と言えるようなものはない。したがって、量子力学は正しい理論だと言えそうだ。しかしアインシュタインにとって、実験と合う正しい理論だというだけでは不十分だった―理論はそれに加えて、完全でなければならなかったのである。

「完全」という言葉が何を意味しているにせよ、EPRは、物理理論の完全性に対して、ひとつの必要条件を与えた。「物理的な実在の要素はすべて、その物理理論のなかに対応物をもたなければならない」。理論が完全であるための判定基準をこのように定める以上、EPRがこの先に議論を進めるためには、「実在の要素」とは何かを定義しなければならない。

アインシュタインは哲学の泥沼にはまりたくはなかった。あまりにも多くの人たちが、「実在」を定義しようとして、その泥沼に飲み込まれていった。実在が何で構成されているのかを明らかにしようとして、無事にその沼から出てきた者はかつてひとりもいなかったのだ。そこでEPRは、その泥沼を回避するために、自分たちの目的にとって、「実在を一般的に定義する必要はない」と述べた。そのうえで、「実在の要素」を定義するために、「十分」にして「妥当」な判定基準、と三人が考えるものを使うことにした。その判定基準とは、「系をいかなる仕方でもかき乱すことなく、ある物理量の値を、確実に(すなわち確率1で)予測することができるなら、その物理量に対応する、物理的実在の要素が存在する」というものだった。

アインシュタインは、量子力学が捉えていない客観的な「実在の要素」が存在することを示すことにより、量子力学は自然についての完全な基礎理論だというボーアの主張を突き崩したいと考えたのだ。アインシュタインは、ボーアや彼の意見を支持する者たちとの論争の焦点を、量子力学には内部矛盾があるかどうかという問題から、実在はいかなる性質をもつのか、そして理論は役割とは何かという問題へとシフトさせたのである。』

EPR論文には、量子論のコペンハーゲン解釈と客観的実在とは両立不可能だというアインシュタインの考えが表明されていた。それについてはアインシュタインのいう通りであり、ボーアもそれはわかっていた。じっさいボーアは、「量子の世界というものはない。あるのは抽象的な量子力学の記述だけである」と述べているのである。コペンハーゲン解釈によれば、粒子には、独立した実在性はない。観測されていないときには、粒子は物理的な性質をもたないのだ。アメリカの物理学者ジョン・アーチボルト・ホイーラーは、のちにこの考え方を次のように言い表した。「基礎的な現象は、観測されるまでは実在しない」。EPR論文が世に出る一年ほど前にはパスクアル・ヨルダンが、観測者とは無関係な実在を認めないコペンハーゲン解釈の観点を論理的にとことん突き詰めて次の結論に達した。「われわれ自身が、測定結果を生み出すのである」

ポール・ディラックは、「アインシュタインがこれではダメだと証明したのだから、一からやり直しだ」と言った。彼ははじめ、アインシュタインは量子力学に致命的な打撃を与えたと考えたのだ。しかしすぐに、ディラックもその他多くの物理学者たちと同じく、今回もまたボーア=アインシュタイン論争の戦場から、勝者として帰還したのはボーアだと考えるようになった。量子力学が非常に役に立つ理論であることはとっくの昔に証明されていたし、EPRに対するボーアの回答をじっくり吟味してみようという者はほとんどいなかった―なにしろボーア自身の基準に照らしてさえ、その回答はあいまいで難解だったのだから。』

42.理論と哲学的立場

アインシュタインの抵抗は、個人的というより物理学界への警鐘だったように思います。「実験の証拠に基づかず、科学理論を基礎として哲学的世界観を作ること」の危機感から、その危険性を強く訴え続けたということではないでしょうか。アインシュタインの執拗ともいえる論争によって、量子力学は可能な限りの精査を通して今に至っているように思います。ボーアも親愛なる友であるアインシュタインからの警告の意図を理解していたからこそ、アインシュタインからの問題定義を真摯に受け止め、生涯にわたって取り組み続けたのではないかと思います。

『ふたりのあいだで語られなかったことは、すでにお互いが知っていることだった。量子力学の解釈に関するふたりの論争は、突き詰めれば、実在をどう位置づけるかに関する哲学的な信念にかかわっていた。世界は実在するのだろうか? ボーアは、量子力学は自然に関する完全な基礎理論だと信じ、その上に立って哲学的な世界観を作り上げた。その世界観にもとづき、ボーアはこう断言した。「量子の世界というものはない。あるのは抽象的な量子力学の記述だけである。物理学の仕事を、自然を見出すことだと考えるのは間違いである。物理学は、自然について何が言えるかに関するものである」。アインシュタインはそれとは別のアプローチを選んだ。彼は、観測者とは独立した、因果律に従う世界がたしかに実在するという揺るがぬ信念の上に立って量子力学を評価した。その結果として、彼はコペンハーゲン解釈を受け入れることができなかった。「われわれが科学と呼ぶものの唯一の目的は、存在するものの性質を明らかにすることである。ボーアにはまず理論があり、次に哲学的な立場があった。その哲学的立場とは、理論が実在について何を語っているかを理解するために作り上げた解釈だった。アインシュタインは、何であれ科学理論を基礎として哲学的世界観を作ることの危険性を知っていた。新しい実験的証拠の光に照らして、理論に不十分な点があることが判明すれば、その理論に支えられていた哲学的な立場は崩れるからだ。「いかなる知覚的行為とも無関係な実在を仮定することは、物理学の基礎です」とアインシュタインは述べた。「しかしその仮定が正しいかどうかを、わたしたちは知らないのです」

アインシュタインは、哲学的には実在論者であり、そのような立場を根拠づけることは不可能であることを知っていた。それは実在に関するひとつの「信念」であって、証明できるようなものではないからだ。しかし、たとえそうだとしても、アインシュタインにとって、「人が理解したいと願うのは、そこに存在する現実の世界」なのだった。彼はモーリス・ソロヴィンへの手紙に次のように書いた。「人間理性にとって手が届くかぎりの実在の本性が合理的なものだという確信について何か語るとすれば、“宗教的”確信というより良い表現が見つかりません。この感覚がなくなるところでは、科学はつねに退屈な経験主義に陥ってしまう恐れがあります」

ハイゼンベルクは、アインシュタインとシュレーディンガーは「古典物理学の実在概念、より一般的な哲学的な言葉を使うなら唯物論[精神の実在を否定して、物質の根源性、独自性のみを主張する哲学の理論]の実在論に戻りたい」のだろうと考えていた。ハイゼンベルクにとって、「石や木が存在するのと同じ意味において、最小の構成要素が客観的に存在するような実世界が、われわれがそれらを観察するかどうかによらずに存在している」という信念をもつことは、「十九世紀の自然科学に広く行き渡っていた、素朴な実在論の観点」に後戻りすることだった。アインシュタインとシュレーディンガーは「物理学を変えることなく哲学を変えたい」のだというハイゼンベルクの判断は、半ば正しく、半ば間違っていた。アインシュタインは物理学そのものを変えることにも懸命だった―彼は、多くの人たちが考えていたような、保守的な過去の遺物ではなかったのである。古典物理学の概念は、何か新しいもので置き換えなければならないとアインシュタインは確信していた。それに対してボーアは、巨視的な世界は古典物理学の概念で記述されるのだから、巨視的な世界については、古典物理学を超える理論は探そうとすることさえ時間の無駄だと論じていた。じっさい、彼が相補性の枠組みを作り上げたのは、古典的な概念を救おうとしてのことだった。ボーアにとって、測定装置とは独立した基礎的な物理的実在などというものは存在しなかった。ハイゼンベルクが指摘したように、「われわれは量子論のパラドックス、すなわち、古典的な諸概念を使うしかないというパラドックスを避けることはできない」とボーアは考えていたのである。アインシュタインが「心休まる哲学」と呼んだのは、古典的諸概念を残さなければならないという、ボーア=ハイゼンベルクの魅力的な呼び声のことだったのだ。』

アインシュタイン=ボーア論争は、アインシュタインの死をもって終わったわけではなかった。ボーアは、論敵がまだ生きているかのように、その後も量子論争をつづけたのだ。「わたしにはアインシュタインが微笑んでいるのが見える。得意気でありながら、思いやりと優しさを浮かべたあの顔で」。ボーアが物理の基本的な問題について考えるときには、アインシュタインならどう言っただろうかということが、まず頭に浮かぶことが多かった。1962年11月17日の土曜日、ボーアは、自分が量子物理学の発展に果たした役割に関する、五回にわたるインタビューの最後のひとつを受けた。翌日曜日、昼食をとった後、ボーアはいつものように昼寝をするために寝室に向かった。夫の声を聞いた妻のマルグレーデが寝室に急ぐと、そこには意識を失ったボーアがいた。七十七歳のボーアは、致命的な心臓発作を起こしたのだ。前の晩、かつての講義をもう一度反芻しながら、彼が最後に書斎の黒板に描いたのは、アインシュタインの光の箱だった。

画像出展:「量子革命」

1954年アインシュタインが亡くなる前年の写真です。(プリンストンの自宅にて)

左は1930年、右は1962年11月亡くなる前夜にボーアが書斎の黒板に描いた“光の箱”です。


アインシュタインは、こう語ったことがある。「わたしは一般相対性理論について考えた時間より、百倍も多くの時間をかけて量子の問題について考えた」。ボーアは、量子力学は、原子の世界について何を教えているのかを理解しようとするなかで、客観的な実在があるという考えを捨てた。アインシュタインにとってボーアのその判断は、量子力学はたかだか真実の一部しか含んでいないことを示す明らかな兆候だった。ボーアは、実験や観察でわかることの背後に、量子の世界が実在するわけではないと主張して譲らなかった。アインシュタインは、「それを認めることに論理的な矛盾はないが、その考えはわたしの科学的直観と真っ向から対立するので、わたしとしてはより完全な理論を探さずにはいられないのである」と述べた。彼は、「単に出来事が起こる確率ではなく、出来事そのものを描き出すような実在のモデルを作ることは可能だ」と信じることをやめなかった。しかし結局、アインシュタインはボーアのコペンハーゲン解釈を論駁することができなかった。プリンストン時代のアインシュタインを知るアブラハム・パイスは、次のように述べた。「相対性理論について語るときの彼は冷静だったが、量子論については熱くなって語った」。そしてパイスはこう言い添えた。 「量子は彼のデーモンだった」。』

43.統一場理論

アインシュタインが目指したのは電磁気学、一般相対性理論、そして量子力学を統合する重力理論でした。

アインシュタインは、人生最後の二十五年間をかけて追及したにもかかわらず、いまだ捉えることのできない統一場理論―それは一般相対性理論と電磁気学の結婚だった―が、自分が追い求める完全な理論になると信じていた。その統一場理論は、量子力学を含むような完全な理論になるはずだった。パウリはそんなアインシュタインの統一の夢に対し、「神が引き離したものを、何人たりともふたたび結びつけてはなりません」という辛辣な判定を下した。当時はほとんどすべての物理学者が、アインシュタインは現実が見えていないと言ってあざ笑った。しかし、[重力・電磁力に加えて]放射性崩壊を引き起こす弱い核力と、原子核をまとめている強い核力が発見されて、物理学者が相手にしなければならない力が四つに増えると、まさにアインシュタインが求めていたような理論の探求が、物理学の聖杯になったのである。』

『ボーアとの論争で決定打を出すことはできなかったものの、アインシュタインの挑戦は後々まで余韻を残し、さまざまな思索の引き金となった。彼の戦いはボーム、ベル、エヴェレットらを力づけ、ボーアのコペンハーゲン解釈が圧倒的影響力を誇って、ほとんどの者がそれを疑うことさえしなかった時期にも検討を促した。実在の本性をめぐるアインシュタイン=ボーア論争は、ベルの定理へとつながるインスピレーションの源だった。そしてベルの不等式を検証しようという試みから、量子暗号、量子情報理論、量子コンピューティングといった新しい研究分野が直接間接に生まれてきたのである。こうした新しい分野のなかでもとくに注目すべき、エンタングルメント[量子もつれ]を利用した量子テレポーテーションだ。SFの世界の話しのように聞こえるかもしれないが、1997年には、ひとつならずふたつのチームが、その粒子の量子状態が別の場所にあるもうひとつの粒子に完全に転写されたので、事実上、最初の粒子を移動させたことになるのだ。

アインシュタインは、コペンハーゲン解釈を批判し、彼に取り憑いた量子のデーモンを滅ぼそうとしたせいで人生の最後の三十年は不遇だったが、彼の主張の一部は正しかったことが示された。アインシュタイン=ボーア論争は、量子力学の数学に含まれる式や数値とはほとんど関係がなかった。量子力学は何を意味しているのか? 実在の本性について量子力学は何を語るのか? こうした問いにどう答えるかが、ふたりを分けたのである。アインシュタインは、具体的な解釈を示したことは一度もなかった。なぜなら彼は、物理理論を睨んで自分の哲学を作るということをしなかったからだ。その代わりに彼は、実在は観測者とは独立しているという信念にもとづいて量子力学を調べ抜き、この理論には満足できないと考えるようになったのだ。

1900年12月には、たいていのことは古典物理学で説明がつき、ほとんどすべてのことが古典物理学の支配する領域に収まっていた。そのときマックス・プランクが量子に出くわし、物理学者たちは今なお、量子の取り扱いに苦労している。アインシュタインは、「わたしは量子に強い関心を持ち」、半世紀ものあいだ「考え続けた」が、いまだ理解したというには程遠いありさまだと述べた。最後までその努力を続けたアインシュタインが慰めを見出したのは、ドイツの劇作家にして哲学者でもあるゴットホルト・レッシングの次の言葉だった。「真実を手に入れたいという願望は、真実を手に入れたという確信よりも尊い」。

感想

1900年、マックス・プランクが「黒体の放射法則の導出法」の中で“量子”と命名し、1905年にはアルベルト・アインシュタインが光量子の存在と光電効果に関する論文を発表しました。しかしながら、量子論の扉を開いたのはニールス・ボーアが1913年7月に発表した論文、「原子と分子の構成について」だったと思います。

量子論から量子力学への道程も困難極まりないものでしたが、ボーアは若い天才物理学者のハイゼンベルクにすべてを託し、そのハイゼンベルクは友人で同じく若き天才物理学者のパウリの協力により、ついに行列力学にもとづく量子力学を確立しました。しかし、この行列力学は難解な数学的なアプローチであったため、多くの物理学者にとって理解困難なものでした。

それに対抗するように登場したのが、直観的で物理学者にとって分かりやすい波動力学でした。そして、波動力学を発見したシュレーディンガーを後押ししたのがアインシュタインでした。アインシュタインは「コペンハーゲン解釈」に対して、ゾンマーフェルトへの手紙の中で、次のように話しています。「量子力学は統計的法則を記述するという意味では正しい理論かもしれませんが、基本的な個々のプロセスを記述する理論として適切ではありません」。

これは、アインシュタインが考える物理学のあるべき姿に照らし合わせると、受け入れることができない“解釈”でした。また、ボーアの【相補性】に対してアインシュタインは【統一場理論】を考えていました。これがシュレーディンガーとともに「コペンハーゲン解釈」を受け入れることなく、論争になった核心の一つだったと思います。しかしながら、このアインシュタインやシュレーディンガーとの論争、特に第五回ソルヴェイ会議の公私にわたる、あたかもチェスのような闘い、さらに四半世紀に渡って繰り広げられた論争は、確実に量子力学を磨き上げました。

アインシュタインの死後十年を経た1965年、ノーベル賞受賞者のリチャード・ファインマンは次のような言葉を残しました。「量子力学を理解している者は、ひとりもいないと言ってよいと思う」また、「こんなことがあっていいのか?と考え続けるのはやめなさい―やめられるのならば。その問いへの答えは、誰も知らないのだから」。

不可知とは「人間のあらゆる認識手段を使用しても知り得ないこと」とされています。不可知論は古代ギリシアや古代インドから存在し、近代においては哲学者カントが「純粋理性批判」において、「物自体は認識できずかつ知り得るものではなく、人は主観形式である時間・空間のうちに与えられた現象だけを認識できる能力のみがある」という考えを提示しました。これも一種の不可知論とされています。

本書の中には次のような記述がありました。

『ハイゼンベルクが発見した不確定性は、現実の世界に本来的に備わっている性質なのだ。原子レベルの世界で観測可能な量について、プランク定数の大きさにより規定され、不確定性関係により課される正確さの限界は、装置をどれだけ改良しても決して消滅することはない、とハイゼンベルクは述べた。この驚くべき発見の名前としては、「不確定性」や「不決定性」よりも、「不可知性」(unknowable)というほうがふさわしかったかもしれない。

不可知性はボーアとアインシュタインを分けた価値観の相違であり、分岐点ではなかったのかと思います。

ご参考Youtube“量子力学と仏教は同じだった!?物理学者たちが東洋思想に魅了される理由【宇宙の真理】(8分54秒)以下がこの動画の内容です。

00:06 物理学者たちの仏教への反応

01:07 量子力学の世界観①(ウィグナーの友人 ; 思考実験)

03:27 西洋哲学者たちの量子力学への反応

04:08 仏教の世界観①(縁起)

05:11 量子力学の世界観②(不確定性原理)

05:58 仏教の世界観②(不可知性)

06:26 不可知性の世界

06:40 コペンハーゲン解釈の世界

06:56 量子力学の父

07:49 東洋思想と量子力学の関係性の論文

※07:58のところで、ボーアは以下のように述べたということが紹介されています。

・・・この考えは、

陰陽の名で知られるシンボルである太極図で表現された古代東洋と密接に調和しています。この考えによれば、自然界のすべての変化は、二つの主要な原因または原理によって調和され、それぞれが他を補完しているのです。』

『ボーアはデンマークの国民的英雄になり、1947年、デンマーク最高の勲章、大象位勲章を受けた。この勲章をもらうとき、家の紋章を選ぶ規定があった。ボーアはそのとき、彼の思想を表す非常に特徴のある紋章を選んだ。紋章の上には「CONTRARIA SUNT COMPLEMENTA」=対立するものは相補的である。という意味の言葉がかかれていた。ボーアの選んだ紋章は中国の「易」の思想を表すという太極図である。 

の二色の円が太極図です。 

画像出展:「アインシュタイン ロマン3」

おそらく、向かって左から3人目がボーア博士だろうと思います。また、次のような話をされたとのことです。

『富士山を箱根や伊豆、その他さまざまな場所から見ることができました。富士山は光線や天候によって姿を色々変えます。あるときは山頂が山に隠れ、あるときは雪を頂く山頂が雲の上に浮かんでいました。その時々の印象は非常に異なります。しかし、富士山の本当の優美な姿はその時々の印象がすべて私の中で合わさってできるのです。それは相補性と同じことなのです。』

ルビンの壺

画像出展:「Binary Diary

もし、人間社会において“壺”という物が存在していないとすれば、この図を見て気づくことは向かい合った二人の横顔だけです。

「不可知」は人間のあらゆる認識手段を使用しても知り得ないことです。やはり、我々が生活している物質世界において、不可知という考えも必要ではないかと思います。

 

ボーアとアインシュタイン5

著者:マンジット・クマール

発行:2013年3月

出版:新潮社

目次は“ボーアとアインシュタイン1”を参照ください。

37.1927年9月、イタリアのコモで開催された国際物理学会

ボーアが相補性という考えを発表したのは、イタリアのコモで開催された国際物理学会でした。そして約1か月後には「第五回ソルヴェイ会議」がブリュッセルで行われました。後年、「コペンハーゲン解釈」と呼ばれるようになった量子物理学は、この二つの会議で行ったボーアの講演が原点です。

『1927年9月11日から20日にかけて、イタリアのコモで開催された国際物理学会は、イタリアのアレッサンドロ・ボルタの没後百周年の記念行事だった。会議がたけなわとなっても、ボーアはまだ、9月16日に予定されている講演の原稿を書き続けていた。講演当日、カルドゥッチ研究所で彼の話を待ち受ける参加者のなかには、ボルン、ド・ブロイ、コンプトン、ハイゼンベルク、ローレンツ、パウリ、プランク、ゾンマーフェルトがいた。

ボーアはまず、新しい相補性という考え方の枠組みを初めて公式の場で説明したのち、ハイゼンベルクの不確定性原理を取り上げ、量子論において測定が果たす役割について語った。ボーアが小声で話す内容を、隅から隅まできちんと聞き取るのは難しい人たちもいた。ボーアは、シュレーディンガーの波動関数に関するボルンの確率解釈をはじめ、さまざまな要素をひとつひとつつなぎ合わせ、それらを量子力学に対する新しい物理的理解の基礎とした。物理学者たちはのちに、たくさんのアイデアが混じり合ったその解釈のことを、コペンハーゲン解釈と呼ぶようになる。

ボーアの講義は、後年ハイゼンベルクが、「量子論の解釈にかかわるあらゆる疑問について、コペンハーゲンで行われた徹底的な研究」と表現することになる努力の、ひとつの到達点だった。このデンマーク人が与えた回答は、「量子の手品師」たる若きハイゼンベルクさえも、はじめは戸惑いを覚えるほどのものだった。ハイゼンベルクはのちに、当時の様子を次のように語った。「何時間も話し続けてすっかり夜も更け、身通しがつかないまま議論が終わると、わたしはしばしば研究所のそばに広がる公園にひとりで散歩に出かけ、繰り返しこう自問したものだった。自然は本当に、こうした原子レベルの実験が示しているような馬鹿げたものなのだろうか?」。この疑問に対するボーアの答えは、きっぱりとした「イエス」だった。測定と観測にそのような重要な役割を与えることは、自然のなかに規則的なパターンや因果的な結びつきを見出そうとするいっさいの試みを無効にするものだった。

科学の中核的教義のひとつである因果律は捨てなければならないと、論文のなかではっきりと唱えた最初の人物がハイゼンベルクだった。彼は不確定性原理の論文に次のように書いた。「現在が正確にわかっていれば未来を予測することができる」という決定論的な因果律の定式化において、間違ってるのは結論ではなく、仮定のほうである。現在をあらゆる細部にわたって知ることは、原理的にさえできないからだ。たとえば、一個の電子がもつ位置と速度を、同時に正確に知ることはできない。それゆえわれわれに計算できるのは、その電子が未来においてもつ位置と速度に関する、「さまざまな」可能性だけである。原子レベルのプロセスについて、一回かぎりの観測や測定で得られる結果を予測することはできない。正確に予測できるのは、ある範囲の可能性のうち、どれかの結果が得られる確率だけなのだ。

ニュートンの敷いた基礎の上に築かれた古典的宇宙は、決定論的な時計仕掛けの宇宙だった。アインシュタインの相対性理論による修正を受けてからも、粒子であれ惑星であれ、与えられた時刻における物体の位置と速度が正確にわかれば、あらゆる時刻における物体の位置と速度は、原理的にはどれほど正確にでも求めることができる。しかし量子的な宇宙では、あらゆる出来事は空所がないのだ。ハイゼンベルクは不確定性原理の論文の最後の段落で、大胆にも次のように述べた。あらゆる実験が量子力学の法則に従い、それゆえ式ΔpΔq=hに従う以上、因果律を復活させようとすることは、「知覚され統計的な世界」とハイゼンベルクが呼ぶものの背後に、何か「真の」世界が隠れていることを期待するのと同様、「非生産的であり、無意味である」というのがハイゼンベルクの考えだった。それが、彼とボーア、そしてパウリ、ボルンの共通の見解だったのである。

コモの会議では、ふたりの物理学者の欠席が目立っていた。シュレーディンガーは数週間前にプランクの後任としてベルリンに移り、新しい環境に慣れるのに忙しかった。アインシュタインはファシズムのイタリアに足を踏み入れることを拒否した。しかしボーアはわずか1カ月後には、ブリュッセルでこのふたりに会えるはずだった。』

38.1927年10月24日~10月29日第五回ソルヴェイ会議

1926年9月、戦後、ドイツが国際連盟に加入する道が開かれ、第五回ソルヴェイ会議の開催国となったベルギー国王はドイツ人科学者の参加を承認しました。この結果、ソルヴェイ会議にはアインシュタインの参加が認められました。そのソルヴェイ会議の論争の主役はボーアとアインシュタインであり、それは物理学というより哲学に近いものだったようです。

画像出展:「アインシュタイン ロマン3」

『第五回ソルヴェイ会議に招待された物理学者たちはみな、「電子と光子」というテーマを掲げたこの会議は、目下もっとも緊急度の高い問題、物理学というよりむしろ哲学というべき問題について討論するよう企画されていることを知っていた。その問題とは量子力学の意味である。量子力学は自然の本当の姿について何を教えているのだろうか? ボーアはその答えを知っているつもりだった。多くの人たちにとって、ボーアは「量子の王」としてブリュッセルに到着した。しかし、アインシュタインは「物理学の教皇」だった。ボーアにとって、「最近到達した発展の段階は、われわれの観点から見れば、アインシュタイン自身がきわめて独創的なやり方で提示したいくつかの問題を解明するという目的地に至る道のりを、かなり先まで進んだということを意味していた」。彼は、「アインシュタインがそれをどう考えるか」を知りたくてうずうずしていた。ボーアにとってアインシュタインの意見は大問題だったのだ。

かくして灰色の雲に覆われた1927年10月24日の月曜日、最初のセッションが始まる午前十時に、世界有数の量子物理学者のほとんどが、レオポルトド公園内にある生理学研究所の建物に顔をそろえた。その場には大きな期待感がみなぎっていた。それは、準備に一年半をかけ、ドイツが仲間外れにされていた時期を終わらせるために国王の同意を必要とした会議だった。』

『10月26日の水曜日には、量子力学のふたつの対抗理論の提唱者たちがそれぞれ報告を行った。午前のセッションは、ハイゼンベルクとボルンが共同で担当した。ふたつの講演は大きく四つの部分に分かれていた―数学的形式、物理的解釈、不確定性原理、そして量子力学の応用である。

具体的には、この会議の議事録にある通り、上位者のボルンが序説と、第一部および第二部を担当し、第三部と第四部をハイゼンベルクが担当した。ふたりはその報告を次のように切り出した。「量子力学は、不連続の発生こそは原子物理学と古典物理学との本質的な違いだという直観にもとづいています」。そしてふたりはほんの数メートルの距離に座っている物理学者たちに謝意を表す意味で、量子力学は本質的に、「プランク、アインシュタイン、そしてボーアによって創設された量子論を直接的に拡張した」ものだと指摘した。

それに続いて、行列力学、ディラック=ヨルダンの交換理論、確率解釈を説明したのち、不確定性原理と「プランク定数hの意味」に話を進めた。ふたりは、プランク定数は「波と粒子の二重性を介して自然法則に入り込む普遍的なあいまいさの尺度」だと主張した。じっさい、もしも物質と放射が波と粒子の二重性をもたなかったなら、プランクの定数は存在しなかっただろうし、量子力学も存在しなかっただろう。そしてふたりはまとめとして、次のような挑戦的な発言をした。「量子力学は閉じた理論であって、その物理的数学的前提は、もはやいかなる変更も受けることはないと考えています」

閉じた理論だというのは、今後いかなる発展があろうと、量子力学の基本的な特徴は変わらないという意味だ。アインシュタインにとって、量子力学は完全だとか最終理論だとかいう主張はなんであれ、到底受け入れられるものではなかった。たしかに量子力学はみごとな理論だが、アインシュタインの見るところ、まだ本物ではなかったのだ。しかしアインシュタインは挑発に乗ることを拒否し、ふたりの報告に続く討論でも口を閉ざしていた。その討議で発言したのは、ボルン、ディラック、ローレンツ、ボーアの四人で、ボルンとハイゼンベルクの報告に異議を唱えた者はひとりもいなかった。』

『昼食後に演壇に上がったのは、波動力学に関する報告を英語で行ったシュレーディンガーだった。 「波動力学の名のもとに、現在、互いに密接に関係しているが完全に同じではないふたつの理論が使われています」と彼は切り出した。じっさいにはひとつの理論しかないのだが、事実上、それがふたつに分裂していたのだ。一方は、日常的な三次元空間の中にある波についての理論、そして他方は、高度に抽象的な多次元空間を必要とする理論だ。問題は、一個の電子を記述する場合を別にすれば、その波は、三次元よりも高い次元の空間に存在する波になってしまうことだ、とシュレーディンガーは説明した。水素原子に含まれる一個の電子を記述するためには三次元空間で足りるが、ヘリウムの二個の電子を記述するためには、六次元空間が必要になる。とはいえ、配位空間として知られるこの多次元空間は数学的な道具にすぎず、その理論で記述されるプロセスがいかなるものであれ―衝突し合う多数の電子であれ、原子核のまわりを起動運動している一個の電子であれ―そのプロセスは空間と時間の中で起こっている、とシュレーディンガーは論じた。「しかし率直に言って、それらふたつの概念は、まだ完全に統一されていません」と述べてから、彼はふたつの場合それぞれについての説明に話を進めた。

物理学者たちは波動力学を便利に使っていたが、一個の粒子を記述する波動関数はその粒子の電荷と質量の分布を表しているというシュレーディンガーの解釈を支持する者は、指導的な理論家の中にはひとりもいなかった。シュレーディンガーは、ボルンの確率解釈が広く支持されていることにも屈せず、自分の波動関数解釈の妥当性を力説し、定説となっていた「量子飛躍」という考え方に疑問を投げかけた。

シュレーディンガーは、報告者としてこの会議に招待されたときから、「行列派」との衝突は避けられまいと覚悟していた。講演後に最初に質問に立ち上がったのはボーアだった。ボーアは、シュレーディンガーが報告の後半で述べた「困難」は、彼が前半で述べた、ある結果が間違っているからではないかと問いただした。シュレーディンガーは、ボーアのその質問はうまく切り抜けたが、今度はボルンが立ち上がり、別のところで計算に間違いがあるのではないかと質問した。シュレーディンガーは少しいらついた様子で、「その計算は完璧に正しく厳密であり、ボルン氏による抗議は根拠がありません」と述べた。 

さらに二人が発言したのち、ハイゼンベルクが立ち上がった。「シュレーディンガー氏は報告の最後で、われわれの知識が深まれば、多次元理論で得られた結果を三次元空間で説明し、理解できるようになるだろうとの希望的観測を述べることで、彼の理論を根拠づけました。しかしわたしの見るところ、シュレーディンガー氏の計算には、この希望的観測を根拠づけるようなものは何もないように思います」。これに対してシュレーディンガーは、「三次元で考えることができるようになるだろうという自分の期待は、さほど荒唐無稽な夢物語というわけではありません」と答えた。それから数分ほどして討議が終わり、議事の第一部にあたる招待講演はすべて終了した。』

『一般的討論のひとつ目のセッションは、10月28日金曜日の午後に始まった。まずローレンツが、因果律、決定論、確率の問題に討論のテーマを絞るために、いくつかの論点を提出した。量子的な出来事には何らかの原因があるのだろうか、ないのだろうか? 彼の言葉を借りるなら、「決定論は、それを信仰箇条のひとつとしなければ主張できないのだろうか? 非決定論のひとつの原理にまで格上げしなければならないのだろうか?」。ローレンツはそれ以上は自分の考えを述べず、ボーアにこのセッションの舵取りを頼んだ。ボーアはそれを受けて、「量子物理学においてわれわれが直面する認識論的な問題」について語り出した。彼の目的が、アインシュタインにコペンハーゲンの解決策の正しさを納得させることにあるのは、誰の目にも明らかだった。

『アインシュタインは、ボーアが自分の信念の概略を語るあいだ、じっとその言葉に耳を傾けていた。ボーアは、波と粒子の二重性は相補性という枠組みの中でしか説明できないと主張した。また、不確定性原理は、自然に本来にそなわっている特徴であり、古典的念に適用限界があることを明らかにするものだが、その基礎は相補性にあると述べた。そして、量子の世界を調べるために行われた実験の結果を明確に伝達するためには、観測結果そのものだけでなく、実験の設定についても、「古典物理学の語彙を適切に磨き上げた」言葉で表現しなければならないとボーアは主張した。

1927年2月、ボーアが相補性に向かってじりじりと考察を進めていたところ、アインシュタインはベルリンで光の性質に関する講演を行っていた。アインシュタインは、光の量子論と、光の波動論のどちらか一方ではなく、「それらふたつの概念を統合しなければなりません」と主張した。彼がその考えを最初に明らかにしたのは、もう二十年ほども前のことだった。アインシュタインは、「統合」を待望していたのに対し、ボーアは相補性を導入し、波と粒子の性質を、互いに相容れないものとして分離しようとしていた。どんな実験をするかによって、光は波であったり粒子であったりするというのだ。

科学者たちは従来、自分が見ているものを攪乱せずに観測できるという、暗黙の前提の上に立って実験を行ってきた。客体と主体、観測者と観測対象は、はっきりと区別されていたのである。しかしコペンハーゲン解釈によれば、原子の領域では、もはやその区別は成り立たない。その原因を、ボーアは「量子仮説」に求めた―それを彼は、新しい物理学の「エッセンス」と呼んだ。量子仮説とは、量子がそれ以上分割不可能な塊になっているせいで、自然界に不連続性が生じるということを捉えるために、ボーアが導入した言葉である。量子仮説を受け入れれば、観測対象と観測者をはっきり区別することはできなくなる、とボーアは述べた。観測を行おうとすると、測定対象と測定装置とのあいだでかならず相互作用が起こる。しかし量子は塊になっているので、その相互作用を好きなだけゼロに近づけることはできない。そのため原子の領域では、「現象と観測者のどちらに対しても、通常の意味での、独立した物理的実在性を与えることはできない」というのがボーアの考えだった。

ボーアのイメージする実在は、観測されなければ存在しないようなものだった。コペンハーゲン解釈によれば、ミクロな対象はなんらかの性質をあらかじめもつわけではない。電子は、その位置を知るためにデザインされた観測や測定が行われるまでは、どこにも存在しない。速度であれ、他のどんな性質であれ、測定されるまでは物理的な属性をもたないのだ。ひとつの測定が行われてから次の測定が行われるまでのあいだに、電子はどこに存在していたのか、どんな速度で運動していたのか、と問うことは意味がない。量子力学は、測定装置とは独立して存在するような物理的実在については何も語らず、測定という行為がなされたときにのみ、その電子は「実在物」になる。つまり、観測されない電子は、存在しないということだ。

「物理学の仕事を、自然を見出すことだと考えるのは間違いである」とボーアはのちに述べた。「物理学は、自然について何が言えるのかに関するもの」であって、それ以外のなにものでもないというのがボーアの考えだった。彼にとって、科学にはふたつの目的があった。「経験できることの範囲を広げること、そして経験を秩序立てること」だ。アインシュタインはかつてこう述べた。「われわれが科学と呼ぶものの唯一の目的は、存在するものの性質を明らかにすることである」。アインシュタインにとって物理学とは、観測とは独立した存在をありのままに知ろうとすることだった。アインシュタインが、「物理学において語られるのは、“物理的実在”である」と述べたのは、その意味でだった。コペンハーゲン解釈で武装したボーアにとって、物理学において興味があるのは、「何が実在しているか」ではなく、「われわれは世界について何を語りうるか」だった。ハイゼンベルクはその考えを、のちに次のように言い表した。日常的な世界の対象とは異なり、「原子や素粒子そのものは実在物ではない。それらは物事や事実ではなく、潜在性ないし可能性の世界を構成するのである」

ボーアとハイゼンベルクにとって、「可能性」から「現実」への遷移が起こるのは、観測が行われたときだった。観測者とは関係なく存在するような、基礎的な実在というものはない。アインシュタインにとって科学研究は、観測者とは無関係な実在があると信じることに基礎づけられていた。アインシュタインとボーアとのあいだに起ころうとしている論争には、物理学の魂ともいうべき、実在の本性がかかっていたのである。

『第五回ソルヴェイ会議は、ブリュッセルに集まった人たちに次のような印象を残した。ボーアは、コペンハーゲン解釈は論理的に無矛盾だと論証することには成功したが、「完全」で閉じた理論についての唯一可能な解釈だとアインシュタインに納得させることはできなかった、と。アインシュタインは会議からの帰りに、ド・ブロイら数人とともにパウリに立ち寄った。彼はこのフランスの貴公子との別れの際に、「続けなさい、あなたは正しい道を歩いている」と言った。しかしブリュッセルで支持を得られなかったことで傷心したド・ブロイは、その後まもなく自説を撤回し、コペンハーゲン解釈の支持に回る。ベルリンに帰り着いたアインシュタインはすっかり疲れ果て、気が抜けたようになっていた。二週間後、彼はアルノルト・ゾンマーフェルトに手紙を書いて、量子力学は「統計的法則を記述するという意味では正しい理論かもしれませんが、基本的な個々のプロセスを記述する理論として適切ではありません」と述べた。

ポール・ランジュヴァンは後年、1927年のソルヴェイ会議で、「概念の混乱は頂点に達した」と述べたが、ハイゼンベルクにとってはこの会議こそ、コペンハーゲン解釈の正しさを証明する道のりの決定的な転換点だった。会議が終わった時点で、ハイゼンベルクはある人物への手紙に、「科学的な成果に関しては、あらゆる点で満足しています」と書いた。「ボーアとわたしの観点は全般的に受け入れられました。少なくとも、深刻な反論は、アインシュタインとシュレーディンガーからさえ、もはや出てきませんでした」。ハイゼンベルクの見るところ、彼は勝利を収めたのだ。彼はそれからほぼ四十年を経て次のように語った。「われわれは古い言葉を使い、それを不確定性関係により制限することで、あらゆることを明らかにすることができたし、首尾一貫した描像を作ることもできた」。「われわれ」とは誰のことかと問われて、ハイゼンベルクはこう答えた。「当時、それは事実上、ボーアとパウリとわたしだった。 

画像出展:「量子革命」

39.ボーア(コペンハーゲンメンバー)とアインシュタインの議論

ボーアとアインシュタインの論争は会議の外、ホテルのダイニングルームで行われました。アインシュタインは新たな思考実験で武装して、朝食の席に現われました。

『一般的討論の時間にアインシュタインが口を開いたのは、この後はあと一度、ひとつ質問をしたときだけだった。後半ド・ブロイは、「アインシュタインは、確率解釈に対するごく簡単な反論をした以外はほとんど何も言わなかった」と語った。その発言の後、アインシュタインは「ふたたび口をつぐんだ」と。しかし、参加者全員がホテル・メトロポールに滞在していたため、突っ込んだ論争は生理学研究所の会議室でではなく、ホテルのエレガントなアール・デコ様式のダイニングルームで行われていたのである。ハイゼンベルクは、「ボーアとアインシュタインは全面戦争に突入した」と言った。

貴族にはめずらしく、ド・ブロイはフランス語しか話さなかった。彼はダイニングルームでアインシュタインとボーアが話し込んでいて、ハイゼンベルクとパウリらがそれを熱心に聞いているのを見ていたに違いない。しかし彼らはドイツ語で話していたので、ド・ブロイは、アインシュタインとボーアが、ハイゼンベルク言うところの「全面戦争」をしているとは思わなかったのだろう。思考実験の達人として知られるアインシュタインは、毎朝、不確定性原理と、この原理とともに称賛されていたコペンハーゲン解釈の無矛盾性に挑む、新たな思考実験で武装して朝食の席に現われた。

コーヒーとクロワッサンを取りながら、その思考実験の分析が始まった。議論はアインシュタインとボーアが生理学研究所に向かう途中も続けられ、たいていはハイゼンベルク、パウリ、エーレンフェストが、ふたりの後にぞろぞろとついていった。アインシュタインとボーアが歩きながら論じ合ううちに、仮説が洗い出され、論点が明らかにされた。そうこうするうちに午前の部のセッションが始まるのだった。ハイゼンベルクはのちにこう語った。「会議のあいだじゅう、とくに休憩時間には、われわれ若手、とくにパウリとわたしはアインシュタインの実験の分析を試みた。昼食時には、ボーアとコペンハーゲンのメンバーが集まって議論を続けた」。夕方になり、さらにコペンハーゲンのメンバーで相談した後に、共同でアインシュタインの反論に立ち向かった。メトロポール・ホテルで夕食の時間になると、ボーアはアインシュタインに、彼の新しい思考実験は不確定性原理によって課される限界を破ってはいないことを説明するのだった。どの思考実験についても、アインシュタインはコペンハーゲンの反論に欠陥を見出すことができなかったが、ハイゼンベルクが述べたように、「彼が心から納得しているわけではない」のも明らかだった。

ハイゼンベルクがのちに語ったところによれば、数日後、「こうしてボーア、パウリ、そしてわたしは、自分たちの一致点はゆるぎないとわかって納得し、アインシュタインも、量子力学の新しい解釈は、それほど簡単に論駁できないらしいということは理解したようだった」。しかしアインシュタインは屈しなかった。彼は、たとえそれがコペンハーゲン解釈を拒否する理由の本質を捉えてはいけないとしても、「神はサイコロを振らない」という言葉をたびたび口にした。あるときボーアはそれに対して、「しかし、神がどうやってこの世界を回しているのかなど、われわれにはわからないでしょう」と言った。パウル・エーレンフェストは、半ば冗談としてこう言った。「アインシュタイン、残念ながら、きみが新しい量子論に反対するやり方は、きみの敵対者たちが相対性理論について反対するやり方とまったく同じだよ」

アインシュタインとボーアが1927年のソルヴェイ会議で非公式に繰り広げた議論を、偏りのない立場から目撃していた唯一の人物がエーレンフェストだった。ボーアはのちにこう述べた。「アインシュタインの意見が、少数の集団のあいだで熱烈な議論を引き起こした。双方と長年にわたり親しい友人だったエーレンフェストは、きわめて積極的かつ有益なかたちで議論に参加した」。会議が終わって数日後、エーレンフェストはライデン大学の学生たちに手紙を書き、ブリュッセルでの出来事を生き生きと伝えた。「ボーアがみんなを完全に圧倒しています。はじめは誰も彼の言うことが理解できないのですが(ボルンもその場にいました)、ボーアは一歩一歩、みんなを説き伏せて行くのです。もちろん、ボーアは、あの恐るべき意味不明な文句を呪文のように唱えます(気の毒に、ローレンツはイギリス人とフランス人のために通訳をしていますが、まったく意味が伝わりません。ローレンツはボーアの話したことをまとめようとするのですが、ボーアは礼儀正しく、それは自分の言っていることとは全然違うと言うのです)。毎晩夜中の一時になると、ボーアはわたしの部屋にやってきて、「ひとことだけ」と言いながら、午前三時までしゃべり続けます。ボーアとアインシュタインとの対話をそばで見ていられたことは、わたしにとっては喜びでした。ふたりにとって、あれはチェスのようなものなのです。アインシュタインはいつも新しい例を携えてやってきます―それで不確定性関係を打倒しようというのです。ボーアは哲学的なもやのなかから、アインシュタインが次々と打ち出す例を論破する道具を探しだしてきます。しかしアインシュタインは、あたかもびっくり箱の中から飛び出してくる人形のように、毎朝、新しくなって飛び出してきます。こういう議論の価値は計り知れません。しかしわたしはほとんど躊躇なくボーアに賛成し、アインシュタインには反対です」。それでもエーレンフェストはこう認めた。「しかし、アインシュタインと意見の一致をみるまでは、ボーアの心が休まることはないでしょう」

ボーアは後年、1927年のソルヴェイ会議でのアインシュタインとの対話は、「とても楽しい気分のなかで行われた」と語った。しかし彼は少し残念そうにこう言い添えた。「ものの見方や考え方には一定の違いが残った。なぜならアインシュタインは、連続性と因果律を捨てずとも、一見してまったく異質な経験を調和させるみごとな腕前があったので、その理想を捨てる気になれなかったのだろう。それに関して言えば、この新しい学問分野を探求するにあたって、日々新たに蓄積されている原子レベルの現象に関する多くの証拠を調和させるという差し迫った仕事をするためには、連続性と因果律を断念するしかないと考える者たちよりも思い切りが悪かったのだろう」。つまりボーアは、アインシュタインの収めた成功そのものが、彼を過去に縛りつけたと言っているのである。 

画像出展:「量子革命」

左がアインシュタイン、右がボーアです。1930年のソルヴェイ会議となっているので、第五回ではなく、第六回の時の写真ということになります。

画像出展:「量子革命」

右がアインシュタイン、左がボーアです。こちらの写真も第六回になります。

40.「コペンハーゲン解釈」という命名は1955年(28年後)

イタリアのコモで開催された国際物理学会、そしてベルギーのブリュッセルでの第五回ソルヴェイ会議は1927年に開催されました。「コペンハーゲン解釈」は、それから28年後にハイゼンベルクが使った言葉でした。その中核にあったのは“相補性”であり“統合”を目指したアインシュタインにとっては納得できるものではありませんでした。しかし、アインシュタインは否定はせず、「とても繊細にまとめられている」という認識を持っていました。良くいえば包括的、悪いくいえば寄せ集め的だったかもしれませんが、不可思議なミクロの量子物理学を説明するにはこれが最善だったのだと思います。

『ボーアは、「コペンハーゲン解釈」という言葉を一度も使わなかったし、1955年にハイゼンベルクが使うときまで、誰もこの言葉を使っていない。しかし、初めはほんの一握りの熱狂的な支持者しかいなかったこの解釈は、その後すみやかに広がり、最終的にはほとんどすべての物理学者にとって、「量子力学のコペンハーゲン解釈」は、量子力学と同義語になった。この急速な、「コペンハーゲン精神」の広がりと受容の背景には三つの要素があった。ひとつは、ボーアと彼の研究所が果たした重要な役割である。若いポスドクの時代にマンチェスターのラザフォードの研究所に滞在したときの経験に触発されたボーアは、それと同じような活気―やればできるという感覚―にあふれた、自分自身の研究所を作ることに成功したのだ。

ボーアの研究所はすみやかに量子物理学の世界的中心地となり、昔のローマ人たちの言葉をもじれば、「すべての道はブライダムスヴァイ十七番地に通ず」という状況だったと語るのは、1928年の夏にそこを訪れたロシア人のジョージ・ガモフである。アインシュタインが所長を務めるカイザー・ヴィルヘルム理論物理学研究所は書物の上にしか存在せず、アインシュタインはそれでよいと思っていた。彼はたいていひとりで仕事をし、のちには計算をやってくれる助手をひとり雇っただけだったのに対し、ボーアは科学上の子どもたちをたくさん育て上げた。その中でも最初に卓越した権威としての地位にのぼったのは、ハイゼンベルク、パウリ、ディラックだった。後年、ラルフ・クロー二ヒが回想したところでは、この三人はまだ若かったが、ほかの若い物理学者たちがあえて彼らに反論することはなかった。クロー二ヒ自身、パウリにスピンというアイデアを馬鹿にされて、電子のスピンをしまい込んだのだった。

第二の要因として、1927年のソルヴェイ会議のころに、教授のポストにたくさん空きが出たことがある。その席のほとんどすべてを、量子力学という新しい物理学を作るために貢献した者たちが占めた。彼らが向かった研究所は、その後すみやかに、ドイツをはじめヨーロッパ中からもっとも優秀な学生を引き付けるようになる。シュレーディンガーはベルリンで、プランクの後継者というもっとも名誉ある地位に就いた。ソルヴェイ会議の直後に、ハイゼンベルクはライプツィヒ大学の正教授となり、理論物理学研究所の所長も兼任するようになった。その六カ月後の1928年4月には、パウリがハンブルクからチューリッヒに移り、スイス連邦工科大学の教授になった。パスクアル・ヨルダンの数学の力量は、行列力学を発展させるにあたって決定的に重要な役割を果たしたが、そのヨルダンがハンブルクでパウリの後任となった。まもなくハイゼンベルクとパウリは頻繁に行き来するようになり、助手や学生をお互いの研究室やボーアの研究所とで交換し、ライプツィヒとチューリッヒをともに量子力学の中心地にした。クラマースはすでにユトレヒト大学に着任していたし、ボルンはゲッティンゲンにポストを得ていた。かくしてコペンハーゲン解釈はすみやかに量子論の定説となったのである。

三つ目の要因として、ボーアと若い協力者たちは、それぞれ意見に違いがあったにもかかわらず、コペンハーゲン解釈に異議を唱える声に対してはつねに統一戦線を張ったことが挙げられる。唯一の例外が、ポール・ディラックだった。1932年9月に、ケンブリッジ大学でかつてアイザック・ニュートンが務めていた数学のルーカス教授職に着任したディラックは、量子力学の解釈問題にはついに関心を持たなかった。彼にはこの問題が、新しい方程式をもたらさない、つまらない執着のように思えたのだ。興味深いことに、彼は自分のことを数理物理学者と呼んだのに対し、同世代のハイゼンベルクやパウリも、またアインシュタインもボーアも、そう名乗ることは決してなかった。』

『ボーアの論文が英語とドイツ語とフランス語の三カ国語で出版された。英語版は「量子仮説と原子論の最近の発展」と題されて、1928年4月14日に刊行された。その脚注に、「本論文の内容は、1927年9月16日に、コモで開かれたボルタ記念会議で量子論の玄奘について行った講義と本質的に同じものである」とあった。しかし実を言えば、ボーアはその論文のために、コモでの講演とブリュッセルでの発言のどちらよりも、相補性と量子力学に関するアイデアをさらに練り上げていたのである。

ボーアはシュレーディンガーにその論文を一部送り、シュレーディンガーは次のように返信した。「もしもひとつの系、つまり質点を、そのp(運動量)とq(位置)を特定して記述したければ、そのような記述は限られた正確さでしかできないということですね」。だとすれば、そのような制約を受けないような新しい概念を導入する必要がある、とシュレーディンガーは論じ、こう結論した。「しかし、そのような概念的な枠組みを発明するのは非常に難しいということに疑問の余地はないでしょう。というのは―あなたがきわめて印象的に力説したように―そのような枠組みを新しく作るためには、われわれの経験のもっとも深いレベル―すなわち空間と時間と因果律―に触れずにはすまないからです」

ボーアはシュレーディンガーに、「一定の理解を示してくれたこと」には感謝するが、シュレーディンガーは古い経験的な概念を、「視覚化という人間の手段の基礎」と分かちがたく結びつけているので、量子論では「新しい諸概念」が必要だということが理解できていないように見える、と書いた。そしてボーアはふたたび持論を繰り返した。すなわち、問題は古典的な諸概念の適用可能性に多少とも恣意的な制限があるかどうかではなく、観測という概念を分析する相補性という不可避的な特徴が現れることなのだ、と。ボーアは最後に、この手紙の内容についてプランクやアインシュタインと議論してみてもらえないかと書いた。シュレーディンガーがアインシュタインに、ボーアとのやりとりのことを話すと、アインシュタインはこう述べた。「ハイゼンベルク=ボーアの心休まる哲学―というより宗教?―は、たいへん繊細に作り上げられているので、当面、真の信者には優しい枕になってくれるでしょう。信者はそのまどろみから容易には起きないでしょう。そのまま寝かしておきましょう」。』

ボーアとアインシュタイン4

著者:マンジット・クマール

発行:2013年3月

出版:新潮社

目次は“ボーアとアインシュタイン1”を参照ください。

28.数学的には等価だが物理的世界が異なる波動力学と行列力学

一度は断念したシュレーディンガーによる二つの量子力学の関係を明らかにする研究は、ついに実を結びました。

『1925年の春が夏に変わろうとするころには、古典物理学においてニュートン力学が果たしたような役割を、原子物理学において果たすべき理論―量子力学―は、まだ存在していなかった。ところがその一年後には、粒子と波ほども性格の異なる、ふたつのライバル理論が存在していた。しかもそれらの理論を同じ問題に当てはめてみると、まったく同じ結果が得られたのだ。ひょっとすると、行列力学と波動力学のあいだには何か関係があるのでは? シュレーディンガーは、画期的な論文を書き終えた直後から、そのことを考えはじめた。彼は二週間ばかり、ふたつの理論の関係を探ってみたが、何も見出せなかった。「結局、それ以上探すのは諦めました」と、シュレーディンガーはヴィルヘルム・ヴィ―ンへの手紙に書いた。関係が見出せなくても、彼は少しも困らなかった。なにしろシュレーディンガーは、「自分の理論がぼんやり頭に浮かぶよりだいぶ前から、行列計算には耐えられないと思っていたから」だ。しかし結局、彼は両者の関係をさらに追及せずにはいられず、ついに三月の初めに、それを発見する。

形の上でも、内容という点でも大きく異なる二つの理論―一方は波動方程式を用いて波を記述し、他方は行列代数を用いて粒子を記述する理論―は、数学的には同じものだったのだ。両者がまったく同じ答えを与えたのも当然のことだった。まもなく、形のうえでは異なっても、互いに等価であるようなふたつの方程式があることの利点が明らかになった。物理学者が出会うほとんどすべての問題で、シュレーディンガーの波動力学のほうが容易に答えを与えてくれた。しかしそれ以外の側面、たとえばスピンが関係する問題では、ハイゼンベルクの行列のアプローチのほうが役に立つことが示されたのだ。

かくして物理学者の関心は、理論の数学的形式から、物理的解釈へと移っていった。ふたつの理論のどちらが正しいのかという、起こっても不思議はなかった論争は、起こる前に息の根を止められたのである。ふたつの理論は、数学的には等価かもしれないが、その背後にある物理的世界は大きく異なっていた―シュレーディンガーの波はなめらかで連続的なのに対し、ハイゼンベルクの粒子は飛び飛びで不連続なのだ。シュレーディンガーとハイゼンベルクはふたりとも、自分の理論のほうが自然の物理的世界の姿を正しく捉えていると堅く信じていた。しかし、それに関するかぎり、両方とも正しいということはありえなかった。』

29.波動力学の限界

波動方程式はヘリウムやそれより重い原子に当てはめると視覚化は失われ、抽象的な多次元空間なってしまいます。また、光電効果やコンプトン効果を説明することができませんでした。物理学者でも苦労するような行列ですが、量子を幅広く説明するうえでは、ハイゼンベルクの行列力学の方が優れているようです。

『波動力学の波動関数は数学者のいう「複素数」なので、それを直接測定することはできない。複素数は、たとえ4+3iのように、実部と虚部をもつ。このとき実部は4で、普通の数である。虚部は3iである。このiには物理的な意味がない。なぜなら、それはマイナス1の平方根だからである。ある数の平方根とは、二乗したときにその数になるものだ。4の平方根は、2である。(2×2=4)。二乗してマイナス1になる数は存在しない。1×1=1だが、-1×-1もやはり1である。なぜなら、マイナス×マイナスはプラスだからだ。

波動関数を観測することはできない―波動関数は、見ることも触ることもできない観測不可能な雲のようなものだ。しかし複素数を二乗すれば、実験で測定できる量と結びついた実数になる。たとえば、4+3iを二乗すれば、25になる。シュレーディンガーは、電子の波動関数を二乗したもの、|ψ(x,t)|²は、場所xと時刻tにおける電荷の密度を表すと考えたのだ。

波動関数をそのように解釈することに関係して、シュレーディンガーは粒子の実在性に疑問を突きつけ、電子を表すために「波束」というものを導入した。電子を粒子と見なす立場には実験の強力な裏づけがあったにもかかわらず、シュレーディンガーは、電子は粒子のように「見える」だけで、じつは粒子ではないと論じたのである。粒子としての電子というイメージは幻想だ、と彼は考えた。現実の世界に存在するのは波だけであり、電子が粒子のように見えるのは、多数の物質波が重なり合い、波束を作っているからだ、と。空間を進む電子は、波束として進んで行く―ちょうど、一端を固定されたロープの他端を手に持ち、手首を動かして作ったパルスがロープを伝わって行くように。粒子状の波束ができるためには、その粒子に相当する小さな空間領域の外では、さまざまな波長の波が互いに干渉し、打ち消し合わなければならない。

粒子を諦め、すべてを波に還元することで、不連続性と量子飛躍の物理学を回避できるなら、それはシュレーディンガーにとって払う価値のある代償だった。しかしまもなく、彼の解釈は物理的に意味をなさないことが明らかになった。第一に、波束として表された電子は、バラバラに崩れてしまうのだ。もしもその電子を、粒子としてじっさいに検出されている電子と結びつけようとすれば、空間に広がった構成要素の波は、光の速度よりも速く進まなければならないことになる。

シュレーディンガーは、波束が崩れるのをなんとか食い止めようとしたが、手の打ちようがなかった。波速は、波長も振動数も異なるたくさんの波でできているため、それぞれの波が異なる速度で進み、波束はすぐに広がりはじめる。そのため、電子が粒子として検出されるときにはつねに、それぞれの波が瞬間的に一カ所に集中して波束にならなければならない―空間に広がっていたものが、一瞬のうちに、ある一点に局在しなければならないのだ。第二の問題は、波動方程式をヘリウムや、それより重い原子に当てはめようとすると、シュレーディンガーの数学の基礎にある視覚化しやすい世界は、抽象的な多次元空間へと消えてしまうことだった。

一個の電子の波動関数には、三次元の電子の波に関して知るべきことがすべて符号化されている。しかし、ヘリウム電子には、電子が二個含まれており、それらを表す波動関数は、普通の三次元空間のふたつの波ではなく、奇妙な六次元空間に生息するひとつの波になってしまうのだ。周期表の中で、ひとつの元素から次の元素へと順に進んでいくにつれ、電子は一個ずつ増えていく。そして電子が一個増えるたびに、新たに三つの次元が必要になる。そんなわけで、周期表の元素であるリチウムの波動関数は九次元空間を必要とし、ウランの波動関数ともなれば276次元もの空間に生息することになるのである。そういう抽象的な多次元空間の波は、シュレーディンガーが期待したような、連続性を回復させ、量子飛躍を駆逐してくれる物理的な実在の波ではありえなかった。

また、シュレーディンガーの解釈では、光電効果やコンプトン効果を説明することができず、そのほかにも、たとえば次のような問題に答えることができなかった。波束に電荷をもたせるにはどうすればよいのか? 波動力学は、純粋に量子的なものであるスピンを組み入れることができるのか? シュレーディンガーの波動関数が、日常的な三次元空間の中の波を表していないのなら、それはいったい何を表しているのだろうか? これらの問いに答えを与えたのがマックス・ボルンだった。

30.古典的確率とは異なる量子的確率を使って波と粒子を統合する方法

ボルンにとって量子の粒子性を否定することはできませんでした。それはゲッティンゲンで行われていた原子同士を衝突させる実験を通して、「粒子という概念の豊かさ」を実感していたからです。

『シュレーディンガーが、粒子性と量子飛躍は認められないと論じている点は、ボルンは到底受け入れるわけにはいかなかった。彼はかねてから、ゲッティンゲンで行われていた原子同士を衝突させる実験を見ており、「粒子という概念の豊かさ」を実感していたからだ。ボルンは、シュレーディンガーの方程式が優れていることは認めたものの、彼の解釈は受け入れなかった。ボルンは1926年の末に、「シュレーディンガーの形式だけを残して、そこに何か新しい物理的内容を盛り込むためには、彼の物理的描像はすっかり捨て去らなければなりません。彼の描像は、古典的な連続の理論を復活させようとするものです」と述べた。「おいそれと粒子を捨て去るわけにはいかない」と確信していたボルンは、波動関数の新しい解釈を考えるなかで、確率を使って波と粒子を統合する方法を見出すのである。 

画像出展:「量子論を楽しむ本」

『ニュートンの宇宙は完全なる決定論の世界であり、そこに偶然の出る幕はない。そのような宇宙では、粒子は与えられた任意の時刻に、はっきりとした運動量と位置をもっている。粒子の運動量と位置が時間とともにどう変わるかは、その粒子に作用する力によって決まる。』

『あらゆることが自然法則に従って進展する決定論的宇宙において確率が顔を出すとすれば、それは人間の無知の反映だった。もしも任意の系で、その系の現在における状態と、その系に作用する力が完全にわかっているなら、未来においてその系に起こることはすべて決定される。古典物理学における決定論は、すべての作用には原因があるという「因果律」の母体と、へその緒でつながっているのだ。

二個のビリヤードの玉が衝突するように、電子が原子に衝突すれば、その電子はあらゆる方向に散乱される可能性だある。しかし電子とビリヤードの玉との類似性が成り立つのはそこまでだ、とボルンは述べて、驚くべき主張をした。原子レベルの衝突に関して、物理学に答えることができるのは、「衝突後の状態はどうなるのか?」という問いではなく、「その衝突の結果として、所定の結果になる可能性はどれだけあるのか?」という問いだというのである。「かくして決定論という大問題が持ち上がる」と、ボルンは自ら認めた。衝突の後で、電子が正確にどこに存在するのかを知ることはできない。物理学者にできるのはただ、電子がある角度に散乱される確率を計算することだけだ、とボルンは述べた。それがボルンの言う「新しい物理的内容」であり、彼の波動関数解釈はすべてそこにかかっていた。

波動関数そのものには物理的実在性はない。波動関数は、ぼんやりとした不思議な可能性の領域に存在している。波動関数は、たとえば原子と衝突した電子が散乱されるかもしれない角度をすべて足し合わせたような、抽象的な可能性を表しているのだ。そのような可能性と確率とのあいだには、大きな違いがある。ボルンは、波動関数を二乗したもの―複素数ではなく実数―は、確率の領域に存在していると論じた。波動関数を二乗しても、たとえば、電子のじっさいの位置が得られるわけではない。それが教えてくれるのは、電子がどこに見出されるかの確率だ。もしも電子の波動関数の値が、場所Yでよりも、場所Xでのほうが二倍大きいとすると、電子がXに見出される確率は、Yに見出される確率よりも四倍大きい。しかし、その電子はXに見出されることもあるし、Yや、それ以外の場所に見出されることもある。』

『自分[ボルン]が物理学に持ち込んだ確率は、従来のものとはまったく異なるということにボルンが十分に納得するまでには、ふたつの論文のあいだに流れた十日間という時間が必要だったのだ。その奇妙な「量子的確率」は、情報の不足から生じ、それゆえ理論上は取り除くことができる古典的確率とは別のものである。それは原子の領域にどこまでもついてまわる性質なのだ。たとえば、放射性物質の内部で、放射性原子がいずれ崩壊するのは確実だが、個々の原子がいつ崩壊するかを予測することができない。それは情報が足りないために予測できないのではなく、放射性崩壊を支配する量子的なルールが確率的性質をもつためなのである。

31.アインシュタインとハイゼンベルク

1926年4月28日、ハイゼンベルクはベルリン大学での物理学談話会(コロキウム)の後、アインシュタインに「うちに来ないか」と誘われました。

『講義机にノートを広げ、黒板の前に立ったハイゼンベルクはカチカチに緊張していた。才気あふれる二十五歳の物理学者が硬くなるのも無理はなかった。1926年の4月28日水曜日、彼はベルリン大学の有名な物理学談話会(コロキウム)で、行列力学に関する講義をしようとしていたのだ。ミュンヘンやゲッティンゲンがどれだけの成果を挙げていようと、ハイゼンベルクがいみじくも「ドイツ物理学の牙城」と呼んだのはベルリンだった。聴衆を見渡しながら、ハイゼンベルクは最前列に並んだ四人のノーベル賞受賞者に目を止めた―マックス・フォン・ラウエ、ヴォルター・ネルンスト、マックス・プランク、そしてアルベルト・アインシュタインの面々である。

「そんなにたくさんの有名人と会える初めての機会」にどれほど緊張していたにせよ、「当時としてはかなり型破りな理論の基本的概念と数学的基礎について、わかりやすく説明」できたと我ながら思えるような話をするうちに、ハイゼンベルクの緊張はすぐにほぐれていった。講義が終わり、聴衆がバラバラと帰りはじめたころ、アインシュタインがハイゼンベルクに声をかけ、これからうちに来ないかと誘った。ハーバーラント通りを三十分ばかり歩きながら、アインシュタインがハイゼンベルクに尋ねたのは、家族のことや教育のこと、それまでの研究のことだった。いよいよ本題の議論が始まったのは、アインシュタインの家に着いて、ふたりがゆったり椅子に腰を下ろしてからのことだ。』

32.アインシュタインにとっての行列力学

量子物理学の歩みにおいて、アインシュタインは時に要所要所に存在する関所のような大きな存在だったようです。また、相対性理論の中でアインシュタイン自身が選択したものではありましたが、「観測可能な量だけからなる理論を見つけようとするのは、完全に間違っている」という考えは揺るぎないものでした。

『ハイゼンベルクの回想によれば、アインシュタインは、「きみの最近の仕事の、哲学的な前提」について尋ねたいと切り出した。「きみは原子の内部に電子が存在すると仮定しているが、それはおそらく正しいだろう」とアインシュタイン。「しかし、霧箱の中に電子の軌跡が見えてもなお、きみは軌道というものを認めないと言うのだね。なぜそんなおかしなことを言い出すのか、その理由をもう少し詳しく聞かせてもらえるだろうか?」。ハイゼンベルクにとってはチャンス到来だった。彼は、この四十七歳の量子論の大家を説得して、なんとか味方に引き入れたいと思っていたのだ。

「われわれは原子内の電子の軌道を見ることはできません」と、ハイゼンベルクは説明を始めた。「しかし放電現象では原子が放射を出しますから、そこから原子内電子の振動数と、それに対応する振幅を導き出すことはできます。そしてハイゼンベルクは持論を開陳しはじめた。「良い理論は、直接的に観測可能な量にもとづかなければならないのですから、電子の軌道の代わりに、振動数と振幅だけを使ったほうがよいと思ったのです」。アインシュタインはそれを聞いてこう言った。「しかし、物理理論には観測可能な量だけしか入ってこないなどと、本気で思っているわけではないだろう?」。それはハイゼンベルクが新しい力学を作る際に、基礎としたものを直撃する問いだった。ハイゼンベルクは驚いてこう聞き返した。「でも、それはあなたが相対性理論を作ったときに基礎とした考え方そのものではありませんか?」

アインシュタインは微笑んでこう言った。「うまい手は二度使っちゃいけないよ」。「たしかに、わたしはその考え方を使ったかもしれない」と彼は認めた。「それでもやはり、そんなものは馬鹿げた考えなのだ」。何がじっさいに観測できるかを考えてみることは、発見法的には役に立つかもしれないが、原理的な観点からは、「観測可能な量だけからなる理論を見つけようとするのは、完全に間違っている」とアインシュタインは言った。「なぜなら事実はその逆だからだ。何が観測可能かを決めているのは、理論なのだよ」。アインシュタインは何を言わんとしているのだろうか?

それよりおよそ百年前の1830年、フランスの哲学者オーギュスト・コントは、いかなる理論も観測に立脚しなければならないが、われわれの頭脳は観測を行うために理論を必要としてもいると論じた。アインシュタインは、観測というものは一般にきわめて複雑なプロセスであり、理論に使われている現象についての仮説もからんでくるということを説明しようとした。「観測している現象は、測定装置の内部で何らかの反応を引き起こす。その結果として、装置内でさらに別のプロセスが起こり、複雑な道筋を経て、最終的には知覚的な印象を生じさせ、われわれの意識に結果を定着させるわけだ」。その結果がどのようなものになるかは、どんな理論を使うかによる、とアインシュタインは言うのだ。「きみの理論にしたって、振動する原子から光が飛び出し、その光が分光器や観測者の目に届くまでのメカニズムは、誰もが仮定するように、やはり本質的にはマクスウェルの法則に従うと仮定しているわけだろう。もし、それすらも仮定しないというなら、きみが観測可能だと言っている量はすべて、そもそも観測できないのだから」。アインシュタインはたたみかけた。「つまり観測可能な量しか持ち込んでいないというきみの主張は、きみが定式化しようとしている理論の性質に関する、ひとつの仮説なのだよ。」のちにハイゼンベルクは、「アインシュタインのその意見には完全に意表を突かれたが、彼の議論には説得力があると思った」と述べている。』

『アインシュタインを説得できずに落胆しつつ辞去するとき、ハイゼンベルクは決断を下さなければならない案件を抱えていた。それから三日後の5月1日には、彼はコペンハーゲンにいる予定になっていた―ボーアの助手とコペンハーゲン大学の講師という、ふたつの仕事が始まるからだ。しかしつい最近、ハイゼンベルクはライプツィヒ大学から正教授として招聘されたのだ。彼のような若輩者にとって、正教授という申し出は非常に名誉なことだったが、はたしてその招きを受けるべきだろうか? ハイゼンベルクはアインシュタインに、この難しい選択のことを話した。ボーアのところに行って、彼といっしょに仕事をしなさい、というのがアインシュタインのアドバイスだった。翌日、ハイゼンベルクは、ライプツィヒからの申し出は断るつもりだと両親に手紙を書いた。「よい論文を書き続ければ、これからもお呼びはかかるでしょう。もしそうでなかったなら、もともと自分にはその価値がなかったということです」。』

33.ボーアとハイゼンベルク(量子の世界のあいまいさの核心、波と粒子の二重性の問題)

昔の日本の師匠と弟子のような関係だったボーアとハイゼンベルクにとって、最大の問題は古典物理学では考えられない「波と粒子が同時に存在すること」でした。ハイゼンベルクにとって数学を中心に組み立てた理論である行列力学は絶対的なものでしたが、ボーアは波動力学も重要であり、数学の背後にある物理を理解することを優先しました。「原子レベルのプロセスを完全に記述する理論、その理論の内部で粒子と波が同時に存在できるようにするための方法を見つけなければならない」と確信していたボーアにとって、粒子と波という互いに相容れない概念を調停することが、矛盾のない量子力学の物理的解釈へと続く扉を開けるための鍵と考えていました。

『1926年の5月半ば、ボーアはラザフォードへの手紙にこう書いた。「ハイゼンベルクがこっちに来ました。われわれは暇さえあれば、量子論の新展開や、この理論の大きな可能性について講論しています」。ハイゼンベルクはボーア研究所の、「壁が斜めになった小さな屋根裏部屋」に住み込んだ。部屋の窓からは緑のフェレズ公園が見えた。ボーア一家は、研究所に隣接する広々として豪華な所長邸に移っていた。ハイゼンベルクはしょっちゅうボーア邸に行っていたので、まもなく「ボーア家の人たちといっしょにいるのが当たり前のように」なった。』

『「ボーアは、われわれを苛んでいた量子論の困難について議論しようと、夜も更けてからわたしの部屋に来るのでした」とハイゼンベルクは語っている。ふたりが何より頭を痛めたのは、波と粒子の二重性だった。アインシュタインはその二重性をめぐる状況を、エーレンフェストへの手紙に次のように書いた「片手に波、もう片手には粒子! その両方が実在していることは岩のように堅い事実です。そして悪魔はそれを詩にするのです」

古典物理学では、記述すべき対象は粒子または波であって、その両方ということはありえない。ハイゼンベルクは粒子を使い、シュレーディンガーは波を使って、異なるバージョンの量子力学を発見した。行列力学と波動力学が数学的には等価であることが示されても、波と粒子の二重性について理解が深まったわけではなかった。問題は、次の疑問に答えられる者がいないことだ、とハイゼンベルクは言った。「電子は今このとき、波なのだろうか、それとも粒子なのだろうか? そして、わたしがこれこれの働きかけをしたとき、電子はどんな振る舞いをするのだろうか?」ボーアとハイゼンベルクが、波と粒子の二重性について懸命に考えれば考えるほど、ますます謎は深まるように思われた。』

『ハイゼンベルクはそのころのことを、後年、次のように回想した。「われわれの対話はしばしば真夜中過ぎまで続いた。そうやって何カ月も頑張ったにもかかわらず満足の行く結果が得られなかったので、ふたりとも消耗し、ピリピリした雰囲気になっていった」。ボーアはもう限界だと判断し、1927年2月に四週間の休暇をとり、ノルウェーのグドブランスダールにスキー旅行に出かけることにした。ハイゼンベルクはそれを、「絶望的に難しい問題について、ひとりでじっくり考えるチャンス」と受け止め、ボーアの出発を内心うれしく見送った。最大の問題は霧箱の中の電子の軌跡だった。』

画像出展:「アインシュタイン ロマン3」

34.ハイゼンベルクの不確定性原理

ハイゼンベルクは与えられた任意の時刻に、粒子の位置と運動量の両方を正確に測定することは量子力学によって禁じられていることを発見しました。そして、「何が観測でき、何が観測できないのかを決めているのは、理論だ」と考えました。

『ある晩遅く、研究所の小さな屋根裏部屋で仕事をしていたハイゼンベルクが、行列力学によれば存在しないはずの電子の軌跡が霧箱の中に見えるという謎について考えていると、思考がふらふらと彷徨いだした。すると突然、「何が観測できるかを決めているのは、理論なのだ」というアインシュタインの言葉が、こだまのように聞こえたのだ。自分は今、何かを掴みかけていると感じたハイゼンベルクは、頭をはっきりさせなければと思い、とうに真夜中を過ぎていたにもかかわらずフェレズ公園に散歩に出かけた。

ほとんど寒さも感じないまま、彼の考えはしだいに、霧箱に残された電子の軌跡とは実のところ何なのかという問題に絞られていった。後年、彼はそのときのことを次のように語った。「これまであまりにも安易に、霧箱の中では電子の軌跡が見えると言ってきた。しかしおそらくわれわれは、それほどのものは見ていないのだ。現実にわれわれが見ているのは、電子よりずっと大きいことのたしかな水滴の列にすぎないではないか」。こうしてハイゼンベルクは、なめらかにつながった軌跡は存在しないという確信を得た。彼とボーアは、問題の立て方を間違っていたのだ。問うべきは次のことだった。「電子がおおよそある場所にあって、おおよそある速度で移動しているという事実を、量子力学は記述できるのだろうか?」

急いで机に戻ったハイゼンベルクは、いまやすっかり手の内に入った数式をあれこれいじりはじめた。どうやら量子力学は、情報や観測可能性に制限を課しているらしかった。しかし量子力学は、観測できるものと観測できないものをどうやって決めているのだろう? その答えが不確定性原理だった。 

ハイゼンベルクは、与えられた任意の時刻に、粒子の位置と運動量の両方を正確に測定することは量子力学によって禁じられていることを発見したのである。電子の位置は測定できるし、電子の速度も測定できるけれども、その両方を同時に測定することはできない。どちらか一方を正確に知れば、自然はその代償として、他方に関する情報をあいまいにする。量子の世界にはある種の駆け引きがあって、一方が正確に測定されればされるほど、それだけ他方に関する情報や予測はあいまいになるのだ。ハイゼンベルクは、もしも自分の考え通りなら、不確定性原理によって課される限界を超えて量子の世界を正確に知ることは、いかなる実験によってもできないことを悟った。もちろん、その主張の正しさを「証明する」ことは不可能だが、実験に含まれるあらゆるプロセスが「量子力学の法則に従うはずである以上」、そうでなければならないとハイゼンベルクは確信した。

彼はそれから数日間、不確定性原理―彼の好んだ呼び方によれば、「不決定性原理」―がたしかに成り立っているかどうかを調べることに専念した。ハイゼンベルクは頭の中の実験室で、不確定性原理によれば許されない正確さで、位置と運動量を同時に測定できそうな「思考実験」を次から次へと考え出した。しかし、考えついたかぎりの例で計算してみても、不確定性原理は破れなかった。とくに、あるひとつの思考実験をやってみたとき、「何が観測でき、何が観測できないのかを決めているのは、理論だ」ということを証明できたという手ごたえを得た。』

35.不確定性原理を表す式、ΔpΔp≧h/2πとΔEΔt≧h/2π

ハイゼンベルクは二つの式の発見でジグゾーパズルは完成したと考えました。そして、その式は量子力学と古典力学の間に横たわる深くて根本的な違いを暴露するものでもありました。

『ハイゼンベルクは、ΔpとΔp(Δはギリシャ文字のデルタ)を、運動量と位置について得られる値の「あいまいさ」とすると、ΔpとΔpの積はつねにh/2π以上になることを示すことができた。その式で表せば、hをプランク定数として、ΔpΔp≧h/2πとなる。これが不確定性原理、すなわち、位置と運動量の「同時測定に関する不正確さ」の数学的表現である。ハイゼンベルクはもうひとつ、いわゆる「互いに共役な変数」であるエネルギーと時間の「不確定性関係」も見出した。ΔEを、系のエネルギーEを求める際のあいまいさ、Δtを、Eを観測した時間tのあいまいさとすると、ΔEΔt≧h/2πとなる。

当初、不確定性原理が成り立つのは、実験装置が技術的に未熟だからだろうと考える人たちがいた。いずれ装置が改良されれば、不確定性は消滅するだろう、と。そんな誤解が生まれたのは、不確定性原理の意味を明らかにするために、ハイゼンベルクが思考実験を使ったためだった。しかし思考実験とは、理想的な条件のもので、完璧な装置を用いて行う架空の実験である。ハイゼンベルクが発見した不確定性は、現実の世界に本来的に備わっている性質なのだ。原子レベルの世界で観測可能な量について、プランク定数の大きさにより規定され、不確定性関係により課される正確さの限界は、装置をどれだけ改良しても決して消滅することはない、とハイゼンベルクは述べた。この驚くべき発見の名前としては、「不確定性」や「不決定性」よりも、「不可知性」(unknowable)というほうがふさわしかったかもしれない。

◇不可知性:人間のあらゆる認識手段を使っても知り得ないこと。

36.波と粒子の二重性を受け入れるための相補性

ボーアにとっては波と粒子の二重性こそが量子の世界のあいまさの核心と考えており、シュレーディンガーの波束をハイゼンベルクの新しい原理と結びつけて考えていました。そのため、ハイゼンベルクの粒子と不連続性だけに立脚したアプローチには懐疑的でした。そして、ハイゼンベルクが不確定性関係に没頭していたとき、ボーアは「相補性」を思いついていました。

『ハイゼンベルクがコペンハーゲンで不確定性関係の意味を探ることに没頭していたとき、ボーアはノルウェーのゲレンデで「相補性」を思いついていた。それは彼にとって、単なるひとつの理論や原理ではなく、量子の世界の奇妙な性質を記述するために必要な、それまで欠けていた概念的枠組みだった。波と粒子の二重性という矛盾した性質は、相補性という枠組みの中にうまく収まりそうだった。電子と光子―つまり物質と放射―がもつ波と粒子というふたつの性質は同じひとつの現象の排他的かつ相補的なふたつの側面であり、波と粒子は一枚のコインの裏と表なのだ、とボーアは考えた。

相補性は、波と粒子という、古典的にはまったく異質なふたつの記述方法を、非古典的な世界を記述するために使わなければならないせいで生じた困難を、きれいに迂回するものだった。ボーアによれば、量子的な世界を完全に記述するためには、波と粒子の両方が必要不可欠であり、どちらか一方だけでは不完全な記述しかならない。光子と波はそれぞれ光について異なる絵を描き、それらふたつの絵は隣り合わせに壁に掛けてある。しかし、矛盾を避けるために制限が課されている。与えられた任意の時刻にわれわれに見ることができるのは、ふたつの絵のどちらか一方だけなのである。どんな実験を行っても、粒子と波が同時に見えることはない。ボーアは次のように主張した。「異なる条件のもとで得られた証拠は、一方の絵の中だけで理解することはできず、現象の総体のみが対象について得られる情報を尽くすという意味において、相補的なものとして捉えなければならない」

ボーアがその新しいアイデアに手ごたえを得たのは、ふたつの不確定性関係ΔpΔp≧h/2π、ΔEΔt≧h/2πに、波と連続性を嫌悪するハイゼンベルクには見えなかったものを見たときだった。プランク=アインシュタインの式 E=hvと、ド・ブロイの式p=h/λには、波と粒子の二重性が体現されている。エネルギーと運動量は粒子的な量なのに対し、振動数と波長は波の性質だ。つまりどちらの式にも、粒子の性質を記述する変数と、波の性質を記述する変数の、両方が含まれているのである。ひとつの式に、粒子と波の両方の性質が含まれていることがボーアには腑に落ちなかった。なんといっても粒子と波は、物理的に似ても似つかないものなのだから。

ボーアは、ハイゼンベルクの顕微鏡の思考実験の分析の間違いを正したとき、それと同じことが不確定性関係についてもいえることに気がついた。それに気付いたことでボーアは、相補的かつ排他的な古典的概念(粒子と波動、運動量と位置など)が、量子の世界でどこまで同時に矛盾せずに通用するかを教えているのが不確定性関係だ、という解釈に導かれたのだった。

また、不確定性関係は、エネルギー(不確定性関係の式の中のE)と運動量(p)の保存法則にもとづく記述(ボーアの言葉では「因果的記述」)と、空間(q)と時間(t)の中で出来事を追跡する記述(「時空的」記述)のどちらか一方を選ばなければならないことも意味していた。これらふたつの記述は、考えられるかぎりの実験を説明する際には、互いに排他的、かつ相補的な関係にあった。そこで、位置と運動量のような、互いに相補的な観測可能量を同時に測定しようとしたり、互いに相補的なふたつの記述を同時に用いたりすることには、自然界に本来的にそなわる限界があるのだ、とボーアは考えた。』 

画像出展:「陸上競技の理論と実践」

相補的を説明する例としては、「位置と運動量の関係」があると思います。

『ハイゼンベルクは、「粒子」、「波」、「位置」、「運動量」、「軌跡」といった古典的な概念は、原子の領域ではどこまでも無制限に使うことはできないと考えたのに対し、ボーアは、「実験データの解釈は、本質的に古典的な概念によらなければならない」と考えていた。また、ハイゼンベルクは、これらの概念は操作的に定義されなければならない(測定を介して定義されなければならない)と考えたのに対して、ボーアは、それらの概念の定義は、古典物理学でどのように使われているかによって初めから決まっていると考えていた。さかのぼって1923年のこと、ボーアは次のように書いた。「自然のプロセスに関する記述はすべて、古典物理学の理論によって導入され、定義された概念に立脚しなければならない」。不確定性原理がどんな限界を課そうとも、理論の成否は実験によって検証され、データ、論証、解釈は、すべて古典物理学の言葉と概念によって行われるという単純な理由から、古典的概念を別のもので置き換えることはできない、というのがボーアの考えだった。

『ボーアは電子と光線、すなわち物質と放射を観測するときに、粒子と波、どちらの面が現れるかはどんな実験を行うかによると考え、それについては一歩も譲るつもりはなかった。粒子と波は、基礎となるひとつの現象の相補的かつ排他的なふたつの側面なのだから、現実の実験であれ思考実験であれ、両方の面が同時に現れることはありえない。ヤングの有名な二重スリット実験のように、実験装置が光りの干渉を見るようにデザインされている場合には、波としての光の性質が現れるし、光線を金属表面に照射して光電効果を調べるためにデザインされた実験では、粒子としての光の性質が現れる。光は波なのか、粒子なのかと問うことには意味がない。量子力学においては、光の「正体」を知るすべはない。意味のある質問はただひとつ、光は粒子として「振る舞う」のか、それとも波として「振る舞う」のかということだ。そしてその質問に対しては、「実験の選び方によって、粒子として振る舞うこともあれば、波として振る舞うこともある」と答えることになる、というのがボーアの考えだった。』

ご参考Youtube“【スピリチュアルに騙されるな】量子力学と二重スリット実験【宇宙の真理】(6分40秒~19分17秒に二重スリット実験について解説されています。内容は高度ですが凄い動画です)

ボーアとアインシュタイン3

著者:マンジット・クマール

発行:2013年3月

出版:新潮社

目次は“ボーアとアインシュタイン1”を参照ください。

19.古典物理学からの解放

ボーアから教えられるかぎりのことを学んだハイゼンベルクは、多くの物理学者が踏み込めなかった量子的な概念は、慣れ親しんだ古典物理学の束縛から解放されることこそが、前進する鍵であることに気づきました。

『1924年9月17日にボーアの研究所に戻ったとき、22歳のハイゼンベルクは、量子物理学に関する単著または共著の優れた論文をすでに十篇以上も発表していた。彼は、自分にはまだ学ぶべきことがたくさんあり、それを教えてくれる人物としてボーア以上の適任者はいないことを知っていた。ハイゼンベルクは後年、「ゾンマーフェルトからは楽観的であることを学び、ゲッティンゲンでは数学を学び、ボーアからは物理学を学んだ」と述べた。ハイゼンベルクはそれからの七カ月間、量子論の困難を克服するためにボーアが採っていたアプローチをみっちりと教え込まれる。ゾンマーフェルトとボルンも同じ矛盾と困難に悩まされていたが、両者とも、ボーアほど四六時中その問題ばかり考えていたわけではなかった。それに対してボーアは、口から出るのは量子のことばかりというほど、この問題に没頭していたのである。

ボーアと徹底的に議論するなかでハイゼンベルクが思い知ったのは、「さまざまな実験結果を統一的に解釈することの難しさ」だった。たとえばコンプトン散乱もそのひとつだ。それは電子がエックス線を散乱させる現象で、アインシュタインの光量子仮説を支持する結果が得られていた。さらにド・ブロイが、波と粒子の二重性は、光だけでなく、あらゆる物質にまで拡張されると言い出したために、実験の解釈は何倍も難しくなったように思われた。教えられるかぎりのことをハイゼンベルクに教え込んだボーアは、この若い弟子に絶大な期待をかけた。「この苦境から脱出する道を見出すために必要なことはすべて、いまやハイゼンベルクの手中にあります」

1925年4月の末に、ハイゼンベルクはボーアの親切に感謝し、「これから先、ひとり寂しく研究を続けていかなければならないと思うと悲しいです」と言って、ゲッティンゲンに帰っていった。しかし彼は、ボーアとの議論、そしてその後も続いたパウリとの対話から、ひとつ非常に重要なことを学んだ―何か、とても基本的なものを捨てなければならないということだ。ハイゼンベルクは、水素原子の線スペクトルの強度という長年の未解決問題に取り組むうちに、何を捨てればよいのかがわかった気がした。ボーア=ゾンマーフェルトによる原子の量子論を使えば、水素の線スペクトルの振動数を説明することはできたが、その明るさ、つまりスペクトルの強度は説明できないと考えた。水素原子の原子核の周囲をめぐる電子の軌道は、観測することができない。そこでハイゼンベルクは、「原子核の周囲を軌道運動している電子」という、慣れ親しんだイメージを捨てることにした。それは大胆な一歩だったが、彼にはその道に踏み出す心の準備ができていた。ハイゼンベルクは以前から、観測できないものを絵に描いて示すというやり方が嫌いだったのだ。』

ハイゼンベルクがこの新しい戦略を採るより一年以上も早く、パウリはすでに電子軌道という概念に疑問を突き付けていた。「一番重要な問いは、はっきりと規定された電子軌道について、どこまで語りうるのかということだと思います」と、彼は1924年2月にボーアへの手紙に書いた。この引用文の強調は、パウリ自身によるものである。彼はこのときすでに、排他原理へと続く道のりをだいぶ先まで進んでいたし、電子の殻が閉じるということの意味も考え抜いていた。そして同じ年の十二月にボーアに宛てた別の手紙のなかで、パウリは自分が提示した問題に、すでに次のような答えを与えていたのである。「原子をわれわれの偏見の鎖につなぐべきではありません。電子に普通の力学でいうような軌道があるという仮説も、そんな偏見のひとつだというのがわたしの考えです。量子的な概念を、慣れ親しんだ古典物理に合わせようとするのはやめなければならない。物理学者は自由にならなければならない、とパウリは言うのだ最初にその妥協をやめたのが、ハイゼンベルクだった。彼はプラグマティックな観点から、科学は観測できることにもとづくべきだという実証主義の立場に立ち、観測可能な量だけを使って理論を作ることにしたのである。

20.観測可能な量だけを使って作った理論

ハイゼンベルクの花粉症は重症でした。その難敵である花粉のない島がヘルゴラント島です。ここでハイゼンベルクは誰もが待ち望んだ量子力学の扉を開けました。

『七十歳のハイゼンベルクは当時を回想して語った。その宿舎は、赤い砂岩が削られてできた、島の南端にある崖の近くにあった。三階の部屋のバルコニーからは、眼下に広がる村と海岸線を思い出しては、繰り返しそれについて考えた。ゲーテを読んでくつろいだり、小さなリゾート地で日課のように散歩や水泳をしたりするうちに、彼は内省的な気分になっていった。そうこうするうちに体調もだいぶ落ち着き、注意を散らすようなものがほとんどないなか、やがてハイゼンベルクの思索は原子物理学の問題へと戻っていく。ヘルゴラント島では、このところ彼に付きまとっていた暗い気分も消えていた。ゲッティンゲンから背負ってきた数学の重荷をあっさり投げ捨てると、彼はのびのびとした気分で、線スペクトルの強度の謎について考えはじめた。

ハイゼンベルクは、量子化された電子の世界を記述する新しい数学を探すにあたり、電子がエネルギー準位間を瞬間的にジャンプするときに生じる線スペクトルの、振動数と相対強度だけに焦点を合わせることにした。選択の余地はなかった。原子の内部で起こっていることについて教えてくれるデータは、そのふたつしかなかったのだ。量子飛躍という言葉が喚起するイメージとは裏腹に、電子がエネルギー準位間を遷移するときには、わんぱく坊主が塀の上から道路に飛び降りるときのように、空間を移動するわけではない。ある場所にいた電子が、次の瞬間、別の場所に現れるのだ―その中間のどこも通らずに、ハイゼンベルクは覚悟を決めて、観測可能な量と、それらに結びついたものすべては、電子がエネルギー準位間を遷移するときに行う量子飛躍という不思議な手品によって生じるのだと考えて納得することにした。かくして、電子が原子核のまわりを軌道運動しているという、太陽系のミニチュアのようなわかりやすい原子像は消滅した。

ヘルゴラント島という花粉のない天国で、ハイゼンベルクは、電子が行う可能性のあるすべての飛躍―状態から状態への遷移―を書き表すにはどうすればよいだろうかと考えた。エネルギー準位に関係して観測可能な量のそれぞれについて、ジャンプによって生じる変化を追跡するために彼が考えついた唯一の方法は、数を縦横に並べた表を使うことだった。』

『ニュートン力学で観測できる量にはさまざまあるが、ハイゼンベルクがその中で最初に考えたのは、電子の軌道だった。原子核からはるか遠くに離れたところで、一個の電子が軌道運動しているものとしよう―太陽系でいうなら、それは水星というより、むしろ冥王星に近い。ボーアが定常軌道という概念を持ち込んだのは、電子がエネルギーを放出しながら螺旋を描いて原子核に墜落するのを食い止めるためだった。しかしその電子の定常軌道が古典物理学で導かれたものと一致するためには、原子核からはるか遠くに離れたところで軌道運動している電子の軌道振動数(1秒間に軌道をめぐる回数)は、その電子が放出する放射の振動数に一致しなければならない。

これは突飛な思いつきではなく、対応原理―量子の領域と古典的な領域とのあいだにボーアが架けた概念的な橋―を巧みに応用した結果だった。ハイゼンベルクが想定した電子軌道はとても大きかったので、量子の世界と古典的な世界との境界線上にあった。ふたつの世界のあいだに引かれたその境界線上では、電子軌道の振動数は、電子が放出する放射の振動数に等しいはずなのだ。ハイゼンベルクは、原子内にあるそのような電子は、スペクトルのあらゆる振動数を生み出すことができる仮想的な振動子に似ていることを知っていた。マックス・プランクは四半世紀前に、それとよく似たアプローチを使ったのだった。しかし、プランクは恣意的な仮定を置き、正しいことがわかっていた式を力づくで導いたのに対し、ハイゼンベルクは、古典物理学の見慣れた風景につながるはずだという、ボーアの対応原理に導かれていた。いったん振動子を考えてしまえば、ハイゼンベルクは、その運動の特徴―運動量p、平衡の位置からの変異q、そして振動数―を計算することができた。振動数部vmnをもつ線スペクトルは、さまざまな振動子のうちの、どれかひとつによって放出されるはずだ。ハイゼンベルクは、量子的なものと古典的なものとが出会う、その中間地帯を詳しく調べて得られた結果は、原子の内部という未知の領域を探索するために利用できることを知っていたのだ。

ヘルゴラント島でのある夜遅く、突如として、ジグゾーパズルのピースが合いはじめた。観測可能な量だけを使って作った理論は、すべてのデータを再現してくれそうだった。しかしその理論では、エネルギー保存則は成り立つのだろうか? もしもエネルギー保存則を破っていれば、その理論はトランプの家のように崩れ落ちてしまう。自分の理論が、物理的にも数学的にも矛盾がないことを証明できるまであと一歩というところで、24歳の物理学者は、興奮と緊張のあまり、計算をチェックしながら単純なミスを繰り返すようになった。物理学の基本法則のひとつであるエネルギー保存則がたしかに成り立っていると彼がペンを置いたのは、夜中の三時ころだった。彼は点にも昇る心地だったが、動揺もしていた。後年、ハイゼンベルクはそのときのことを次のように語った。「はじめからわたしは、これは大変なことになったと思った。原子的な現象という上辺から、なんとも形容しがたい、美しい内部を覗き込んでいるような気がしたのだ。自然がこれほどまでに気前よくわたしの目の前に広げて見せてくれた、この豊かな数学的構造を、これから詳しく探っていかなければならないと思うと、めまいがするほどだった」気持ちが高ぶってとても眠れそうになかったので、彼は夜明け前に、ヘルゴラント島の南端に向かって歩き出した。そこには海に突き出した岩があり、何日も前から登ってみたいと思っていたのだ。発見は興奮で吹き出したアドレナリンにエネルギーを注がれるようにして、彼は「たいした苦労もなくその岩によじ上り、太陽が昇ってくるのを待った」。』

画像出展:「MEISTERDRUCKE

(The Grand Staircase, Helgoland, Germany, Photochrome Print, c.1900)

ボーアから全てを託されたハイゼンベルクが、ヘルゴラント島で発見したものは、量子力学の扉を開けた歴史的出来事だったように思います。

世界はひとつ、重力力学はふたつ。その答えは二つを見渡す境界線にあり、【波】(古典)と【粒】(量子)の構造はコインの裏表のように一体型とのことです。

生命の進化を淘汰とみれば、合理性や最適化が重要だと思います。重力力学が2つ存在するとすれば、そのような理由ではないでしょうか。

21.(A×B)-(B×A)≠ゼロ

量子力学の扉を開けたハイゼンベルクが最初に著面した難題は、A×BとB×Aの答えが等しくないという奇妙な掛け算の謎を解くことでした。

『朝の冷たい光の中で、ハイゼンベルクのはじめの幸福感や楽観的な展望は色褪せていった。彼の見出した新しい物理学がうまく行くためには、X×YとY×Xが等しくないという、奇妙な掛け算を使うしかなさそうだった。普通の数なら、どの順番で掛け算をしても構わない。4×5の答えと5×4の答えは、どちらも20である。掛け算の結果は順番によらないというこの性質のことを、数学者は可換性と呼んでいる。数は、掛け算の交換法則を満たすので(つまり「可変」なので)、(4×5)-(5×4)はつねにゼロである。これはすべての子どもが学ぶ数学のルールだ。ハイゼンベルクを深く悩ませたのは、数の表の中のふたつの値を掛け算した結果は、掛け合わせる順番によって変わってしまうことだった。(A×B)-(B×A)は、必ずしもゼロではなかったのである。

彼の理論が必要としている、その奇妙な掛け算の意味がわからないまま、6月19日の金曜日、ハイゼンベルクはドイツ本土に戻ると、そのままハンブルクのヴォルフガング・パウリのもとに直行した。数時間後、誰よりも厳しい批判者であるパウリから励ましの言葉をもらったハイゼンベルクは、その発見をもう少し磨きあげて論文にするためにゲッティンゲンに向かった。二日後、その仕事はすぐにできると思っていたハイゼンベルクは、パウリに手紙を書き、「量子力学を作る仕事は遅々として進むみません」と伝えた。一日、また一日と時間が経ち、新しいアプローチを水素原子にうまく応用できないまま、ハイゼンベルクは追い詰められていった。

気がかりなことは山ほどあったが、ハイゼンベルクが確信していたことがひとつだけあった。何を計算するにせよ、「観測可能」な量のあいだの関係のみ、あるいは、現実には測定が難しいとしても、原理的には測定可能な量のあいだの関係しか使ってはならないということだ。彼は、自分の方程式に現れるすべての量が観測可能だということを公理として、「観測できない軌道という概念を完全に消し去り、その対応物で置き換える」ことに、「わずかばかりの努力のすべてを」注ぎ込んだ。

『その謎めいた掛け算規則には、どんな意味があるのだろうか? その問いがボルンに取り憑いて離れなくなり、彼はそれからの数日というもの、寝ても覚めてもそのことばかり考え続けた。ボルンはその計算規則に見覚えがあったのだが、それが何なのか思い出せなかったのだ。ボルンはアインシュタインに手紙を書き、この奇妙な掛け算がどこから出てくるのかはまだ説明できないけれども、「ハイゼンベルクの最新の論文がまもなく発表されることになるでしょう。まだよくわからないところもありますが、真実を捉えており、深いことは確かです」と伝えた。ボルンは自分の研究所にいる若手、とりわけハイゼンベルクを褒め、「彼の考えについて行くだけでも、わたしは相当努力が必要です」と書いた。くる日もくる日もその計算規則のことばかり考え続けたボルンの努力は、ついに報われた。ある朝、ボルンはふと、学生時代に受験したきり忘れていた、ある数学の講義のことを思い出した―ハイゼンベルクが出くわしたのは、行列演算だったのだ。行列演算では、X×Yは必ずしもY×Xにはならないのである。

22.量子物理学の新時代の幕開けを告げる論文

ハイゼンベルクに並ぶ天才とされたパウリは、ハイゼンベルクが書き上げた論文について、次のような言葉を送りました。「その論文は、かつてない希望と、新たな生きる喜びを与えてくれた。それで謎が解けたというわけではないにせよ、ここでまた、われわれは前進できるでしょう」と。

『六月の末、ハイゼンベルクは父親への手紙にこう書いた。「ぼくの仕事はと言えば、今のところ、あまりはかばかしくありません」。しかしそれから一週間ほどして、彼は量子物理学の新時代の幕開けを告げる論文を書き上げた。自分がやり遂げたことの意味にまだ確信がもてないハイゼンベルクは、写しを一部パウリに送り、申し訳なさそうに、二、三日のうちにその論文を読んで、返事をくれないかと頼んだ。ハイゼンベルクがそれほど急いでいたのは、7月28日にケンブリッジ大学で講演をする予定になっていたからだ。パウリはその論文を、「歓喜をもって」迎えた。パウリはある物理学者への手紙に、ハイゼンベルクの「その論文は、かつてない希望と、新たな生きる喜び」を与えてくれたと書いた。「それで謎が解けたというわけではないにせよ、ここでまた、われわれは前進できるでしょう」と、パウリは言い添えた。そして正しい方向に真っ先に踏み出したのは、マックス・ボルンだった。』

『ハイゼンベルクはその論文のまとめの部分に到達してからさえ、まだ逡巡していた。「ここに提案したような、観測可能な量のあいだの諸関係を使って量子力学のデータを求めるという方法は、原理的に満足の行くものと見なされるべきなのか、あるいはこの方法は結局のところ、現状ではきわめて込み入った問題であることが明白な、量子力学の理論を作るという物理的問題へのアプローチとしては不十分なものであるのかは、ここではごく表層的に採用したこの方法を、数学的により詳しく調べることによってのみ判定できるであろう」』

23.行列演算と量子力学

ハイゼンベルクが発見した数の並びは、十九世紀の半ばにイギリス人の数学者アーサー・ケイリーが提唱した行列演算でした。この行列演算は数学では確立された分野でしたが、ハイゼンベルクの世代の理論物理学者にとっては未知の領域でした。また、このことに気づいたボルンはハイゼンベルクが作り出した枠組みを、原子物理学のあらゆる局面に適用できるような、論理的に矛盾のない枠組みに仕上げなければならないと思い、二十二歳のパスクアル・ヨルダンとともにこの大きな難問に取り組みました。

『ハイゼンベルクの掛け算規則は行列演算であることを突き止めたボルンは、位置qと運動量pを、プランク定数を含む式で結びつける方法をすぐさま発見した。その式はpq-qp=(ih/2π)Iと書くことができる。ここで、Iは、数学者が単位行列を使えば、それなしにはただの数にすぎない右辺を行列にすることができるのだ。この基本式にもとづき、それから数カ月のうちに、行列という数学の方法にもとづく量子力学が完成した。

24.論理的に矛盾のない量子力学を定式化した「三者論文」

猛烈な勢いで行列を勉強したハイゼンベルクは「三者論文」の作業に参加することができました。

『行列を知らないのはハイゼンベルクばかりではなかった。しかし彼は猛烈な勢いでその新しい数学を学びはじめ、まだコペンハーゲンにいるうちに、ボルンとヨルダンに追いつくほどの力をつけてしまった。十月半ばにゲッティンゲンに戻ったハイゼンベルクは、のちに「三者論文」として知られることになるその論文の最終バージョンを作る作業に参加することができた。彼とボルンとヨルダンの三人はその論文により、論理的に矛盾のない量子力学を定式化したのである。それはながらく探し求められていた、原子の新しい物理学だった。

25.守備範囲の広い理論家

シュレーディンガーの最初の論文は実験物理学だったそうです。先にご紹介した若き天才、パウリとハイゼンベルクは理論物理学に傾倒されており、この点が異なります。また、シュレーディンガーは放射性元素、統計物理学、一般相対性理論、色彩論[ゲーテによる光と色の研究]といった幅広い分野で四十篇以上の論文を発表しています。そして、一匹狼で、洒落ていて、気分屋で、親切で、寛大な、じつに愛すべき人間で、しかも、恐ろしく効率のよい、第一級の頭脳の持ち主だったとのことです。

『同僚の物理学者たちの見たシュレーディンガーは、放射性元素、統計物理学、一般相対性理論、色彩論といった幅広い分野で四十篇以上もの論文を発表している。堅実であるが、ずば抜けて優れているというほどもない仕事を重ねてきた、守備範囲の広い器用な理論家だった。シュレーディンガーの仕事のなかには、他人の研究を理解して分析し、分かりやすく説明する力量を示す総説がいくつもあり、いずれも高い評価を得てありがたがられていた。

11月23日、シュレーディンガーのコロキウム(談話会)には、当時二十一歳の学生だったフェリックス・ブロッホが出席していた。ブロッホがのちに語ったところでは、シュレーディンガーは、「ド・ブロイが波と粒子を結びつけた方法や、粒子の定常状態の軌道に整数個の波が収まるという条件を課すことで、なぜニールス・ボーアとゾンマーフェルトの量子化規則が得られるのかという条件を課すことで、なぜニールス・ボーアとゾンマーフェルトの量子化規則が得られのかということを、みごとにわかりやすく説明した」。しかし、波と粒子の二重性には実験の裏づけがなかったため(それが得られるのは1927年のことだ)、デバイは、ド・ブロイの議論は「子どもじみている」との感想を述べた。波の物理学には―音波、電磁波、ヴァイオリンの弦を伝わる波など、どんな波を扱うにせよ―その波を記述する方程式が必要だ。ところが、シュレーディンガーの説明した理論には、「波動方程式」がなかったのだ。ド・ブロイは、物質波の波動方程式を導こうとしたことはなかったし、彼の学位論文を読んだアインシュタインも同様だった。そのコロキウム(談話会)から五十年を経ても、ブロッホはそのときのことを鮮明に覚えており、デバイの指摘は、「あまりにも当たり前すぎて、みんなには軽く聞き流されたようだった」と述べた。

しかしシュレーディンガーは、デバイの言う通りだと思った。「波動方程式のない波では話にならない」のだ。そのとき彼はほとんど瞬時に、ド・ブロイの物質波に対する波動方程式を見つけてやろうと心に決めた。

26.シュレーディンガーが「作った」波動方程式

シュレーディンガーは親切で寛大だったとされていますが、駆け引きのない率直な性格で柔軟性、多様性も持っていたのではないでしょうか。デバイの酷評ともとれる「波動方程式のない波では話にならない」という発言を受け入れ、「量子の波動方程式をみつけてやろう」というポジティブな心が多くの物理学者に支持された直観的な方程式の発見を呼び込みました。

『クリスマス休暇から戻り、年明けに開かれた次にコロキウム(談話会)で、シュレーディンガーは声高らかにこう宣言することができた。「前回デバイが、波動方程式が必要だと言いましたが、さてさて、わたしはそれを見つけました!』。シュレーディンガーはその二週間のうちに、胎児のようなド・ブロイのアイデアを取り上げて、立派な量子力学理論に育て上げたのである。

シュレーディンガーには、どこから出発すればよいかも、何をすればよいかもわかっていた。ド・ブロイは、波と粒子の二重性というアイデアの妥当性の保証を、電子の定在波の波数が整数のときに軌道が閉じ、ボーアの原子モデルで許される電子軌道を再現できることに求めたのだった。しかしシュレーディンガーは、自分の探す方程式は、三次元の水素原子モデルを、三次元の定在波として再現できなければならないと考えた。水素原子は彼が見出すべき波動方程式の試金石になるはずだ。

波動方程式を探しはじめてまもなく、シュレーディンガーはまさに求める方程式を捕まえたと思った。しかし、水素原子に当てはめてみると、その方程式からは実験と合わない結果が出てきてしまった。その失敗の根本的な理由は、ド・ブロイが波と粒子の二重性というアイデアを得たときに、アインシュタインの特殊相対性理論と矛盾しないものを考え、そのよううなものとして提示していたことだった。ド・ブロイのやり方を手本にして進んでいたシュレーディンガーは、当然ながら、「相対論的」な形をした波動方程式を捜し、まさにそれを見つけたのである。そのころにはすでに、ウーレンベックとハウトスミットが電子のスピンを発見していたが、ふたりの論文が専門雑誌に掲載されたのは1925年11月下旬のことだった。当然ながら、シュレーディンガーが発見した相対論的な波動方程式にはスピンが含まれておらず、結果として、その波動方程式から出てきた結果は、実験とは合わなかったのだ。

クリスマス休暇が迫ってきたため、シュレーディンガーは相対性理論のことを気にするのはやめて、昔ながらの波動方程式を探すことに努力を集中した。相対論的でない波動方程式は、電子が光速に近い速度で運動するような場合には、相対論的効果が無視できなくなるため使えなくなる。

シュレーディンガーはそのことをよく知っていた。しかしとりあえずは、そんな波動方程式でも間に合ったのだ。』

12月27日付のヴィルヘルム・ヴィーンへの手紙に、彼は次のように書いた。「目下、新しい原子理論と格闘しているところです。もっと数学を知ってさえいれば! ともあれ、それについてはわたしは非常に楽観的で、結果はとても美しいものになるだろうと予想しています。ただし、解くことができればの話ですが

シュレーディンガーはその波動方程式を「導いた」のではなかった―古典物理学から出発して、厳密な論理をたどるという方法では、その式は得られなかったのだ。そこで彼は、粒子に伴う物質波の波長と、その粒子の運動量とを結びつけるド・ブロイの式と、古典物理学のいくつかの式を睨み合わせて、その波動方程式を「作った」のである。簡単そうに聞こえるかもしれないが、シュレーディンガーがその式を書き下す最初の物理学者になれたのは、彼ほどの技量と経験があったればこそだった。シュレーディンガーはそれからの数カ月間で、その波動方程式を基礎として、波動力学という壮大な建物を作り上げることになる。しかしその前に、彼はそれがたしかに探し求めていた波動方程式であることを証明する必要があった。その方程式は、水素原子に応用した場合、水素のエネルギー準位に正しい値を与えてくれるのあろうか?

一月にチューリッヒに戻ったシュレーディンガーがじっさいに調べてみると、その波動方程式は、たしかにボーア=ゾンマーフェルトの水素原子のエネルギー準位を再現することがわかった。ド・ブロイは、電子の波として円軌道にぴったりはまる一次元の定在波を考えたが、シュレーディンガーの理論から得られるのは、もっと複雑な三次元の「軌道関数」だった。そして、波動方程式を解いて軌道関数が得られれば、その関数によって表される電子状態のエネルギーは自動的に決まる。ボーア・ゾンマーフェルトの原子の量子論では、正しいエネルギーの値を得るためには恣意的な条件を課さなければならなかったが、そういう操作はいっさい不要になったのだ。そればかりか、謎めいた量子飛躍さえもが、電子に許される三次元定在波から別の三次元定在波への連続的な遷移に取って代わられたかにみえた。1926年1月27日、「固有問題としての量子化」と題された論文が、「アナーレン・デア・フィジーク』に届いた。3月13日に同誌に掲載されたその論文には、シュレーディンガー版の量子力学と、水素電子に対する応用が示されていた。

シュレーディンガーは、五十年に及んだ物理学者としての経歴のなかで、年平均40ページ相当の論文を発表しづけた。とくに1926年には、256ページ相当という大量の論文を発表し、波動力学はさまざまな原子物理学の問題に幅広く利用できることを明らかにした。また、彼は、時間とともに変化する「系」を扱うことのできる、時間依存型の波動方程式を考え出した。時間とともに変化する系とは、たとえば、電子が放射を放出、吸収、散乱するような場合である。

2月20日、その最初の論文が印刷を待つばかりとなったとき、シュレーディンガーは自分の作った新しい理論に対して、はじめて波動力学という言葉を使った。

27.ハイゼンベルクの難解な行列力学とシュレーディンガーの直感的な波動力学

数学は苦にしないと思われる物理学者にとっても、当時、行列という数学はとても厄介な代物だったようです。そのため、難解とされたハイゼンベルクの量子力学(行列力学)に比べ、シュレーディンガーの量子力学(波動力学)は多くの物理学者を勇気づけました。この二つは同等のものとのことです。一つは行列、一つは微分方程式から生まれたということなのですが、私にはその同質性を理解することは到底できません。しかしながら、数学者にも劣ることのないハイゼンベルクと、最初の論文が実験物理学だったというシュレーディンガーの視点の違い、授かった才能の違いが二つの量子力学を世に送り出したのではないかと思います。

『冷たくて禁欲的な行列力学とは対照的に、彼が物理学者たちに与えたのは、使い慣れたおなじみの方法だった―彼の方法は、極度に抽象的なハイゼンベルクの方法よりも、ずっと十九世紀物理学に近い言葉で量子の世界を説明してあげようと、物理学者たちに語り掛けていた。謎めいた行列の代わりにシュレーディンガーが持ち込んだのは、物理学者の数学の道具箱にはかならず入っている微分方程式だった。ハイゼンベルクの行列力学は、量子飛躍と不連続性をもたらした。原子の内部を覗いてみたくとも、視覚的なイメージできるものは、そこには何もなかったのだ。シュレーディンガーは、これからはもう、「自分の直感を抑え込む必要はないし、遷移確率やエネルギー準位といった、抽象的な概念だけを相手にする必要もない」と述べた。物理学者たちがシュレーディンガーの波動力学を熱烈歓迎し、われ先にとそれを使いはじめたのは当然のことだった。

シュレーディンガーは、その論文の抜き刷りを受け取るとすぐに、彼が意見を聞きたいと思う物理学者たちにそれを送った。プランクは4月2日付の手紙に、「ずっと頭から離れなかった謎が解けたと言われて、真剣に話に聞き入る子どものように、あなたの論文を読みました」と書いた。それから二週間後にはアインシュタインから、「あなたの仕事のアイデアは、真の天才から沸き上がったものです」という手紙が届いた。シュレーディンガーは、「あなたとプランクが認めてくださったことは、わたしにとって世界の半分からの賞賛よりも大きな意味があります」と返信した。アインシュタインは、シュレーディンガーが決定的な前進を遂げたことを、「ハイゼンベルク=ボルンの方法は邪道であると確信するのと同じぐらいの強さで確信」したのだった。』

『このふたり以外の人たちが十分に理解するまでには、もう少し時間がかかった。ゾンマーフェルトは当初、波動力学は「完全なたわごと」だと思っていたが、やがて考えを変え、「行列力学が正しいことは疑う余地はありませんが、取り扱いが非常に難しく、おそろしく抽象的です。シュレーディンガーはわれわれを助けに駆け付けてくれました」と述べた。ほかにも多くの人たちが、ハイゼンベルクとゲッティンゲンの仲間たちの抽象的で奇妙な理論と格闘するよりは、波動力学の慣れ親しんだ方法を学び、じっさいに使いはじめてみて、ほっと胸をなでおろした。スピンで名をなした若手のヘオルヘ・ウーレンベックは、「シュレーディンガー方程式のおかげで助かりました。これでもう、不慣れな行列力学を勉強しなくてもすみます」と書いた。エーレンフェストやウーレンベックらライデンの物理学者たちは、行列力学を勉強する代わりに、数週間のあいだ毎日「何時間も黒板の前に立ち」、波動力学の驚くべき意味を汲み尽くそうとした。

パウリはゲッティンゲンの物理学者たちに近かったが、シュレーディンガーの仕事の重要性をすぐに見抜き、深く感銘を受けた。彼は行列力学を水素分子に当てはめて成功した際、ハイゼンベルクの方法のことは隅々まで調べ上げていた―彼がそれを迅速かつ徹底的に行ったことに、のちには誰もが驚くことになる。パウリがその論文を「ツァイトシュリフト・フュール・フィジーク」に送ったのは1月17日。シュレーディンガーが最初の論文を投稿するわずか十日前のことだった。パウリは、シュレーディンガーが波動力学を使って、行列力学を使った場合よりも楽に水素原子を扱っているのを見て愕然とした。彼はパスクアル・ヨルダンに次のように書いた。「その仕事は近年出た論文のなかで、もっとも重要な仕事のひとつだと思います。注意深く、集中してそれを読み込んでください」。六月にはボルンまでが、波動力学は「量子の法則を表す、もっとも深い形式」だと言うまでになった。

ハイゼンベルクは、ボルンが変節して波動力学の支持に回ったことを、「あまり良い気持ちはしない」とヨルダンに語った。彼は、シュレーディンガーが慣れ親しんだ数学を使っていることは、「信じられないほど興味深い」が、物理の内容に関するかぎり、原子レベルの出来事を正しく記述しているのは自分の行列力学のほうだと確信していた。』

ボーアとアインシュタイン2

著者:マンジット・クマール

発行:2013年3月

出版:新潮社

目次は“ボーアとアインシュタイン1”を参照ください。

9.一般相対性理論

戦争の四年間は、アインシュタインにとって、もっとも生産的で創造的な時期となりました。彼はこの期間に、一冊の本と五十篇ほどの科学論文を発表し、1915年には最高傑作である一般相対性理論をついに完成させました。

『ニュートン以前から、時間と空間は堅い枠組みであり、終わりのない宇宙のドラマが上演される舞台だと考えられていた。その舞台上では、質量、長さ、時間は、絶対的で不変だった。つまりその劇場の中では、ふたつの出来事の空間距離と時間間隔は、どの観客にとっても同じだったのだ。しかしアインシュタインは、質量、長さ、時間は絶対的ではなく、観測者ごとに変わりうることを見出した。観測者同士がどんな相対運動をしているかによって、空間距離と時間間隔は違って見えるのである。双子の一方が地球に残り、他方が宇宙飛行士になって、光速に近い速度で宇宙旅行をしたとすれば、大きな速度で運動しているほうの双子にとっての時間は伸び(時計の針の進み方が遅くなり)、空間は縮む(運動物体の長さが短くなる)。また、運動している物体の質量は、静止しているときの質量よりも大きくなる。これらはみな、「特殊」相対性理論から引き出せる結論であり、いずれも二十世紀中に実験によって確かめられた。しかし、特殊相対性理論には、速度が変化する場合は含まれていない。それを含むように拡張したのが、「一般」相対性理論である。アインシュタインは、一般相対性理論を作る仕事に取り組んでいたとき、その苦労にくらべれば、特殊相対性理論は「子どもの遊び」のようなものだったと語った。量子は、原子の領域でそれまでの世界像に疑問を突きつけたが、アインシュタインは空間と時間についても、その真の性質に関する知識へと人類を近づけたのだった。一般相対性理論はアインシュタイン版の重力理論であり、やがて物理学者たちはこの理論に導かれて、ビッグバンという起源に迫ることになる。

ニュートンの重力理論によれば、太陽と地球のようなふたつの物体間に働く引力の大きさは、両者の質量の積に比例し、それぞれの物体の質量中心を結ぶ距離の二乗に反比例する。質量同士は接触していないので、ニュートン物理学における重力は、謎めいた「遠隔作用」だ。しかし一般相対性理論における重力は、大きな質量の存在により、空間が歪むために生じる。地球が太陽の周囲をめぐるのは、オカルトのような不思議な力によって地球が太陽に引き寄せられるからではなく、太陽の大きな質量のために空間が歪むためなのだ。それをひとことで言えば、「物質は空間を歪め、歪められた空間は、物質に動き方を教える」ということになる。

1915年の11月、アインシュタインは一般相対性理論を、ニュートンの重力理論では説明できなかった水星軌道の問題に当てはめてみた。水星は太陽のまわりを公転する際、毎回まったく同じ経路をたどるわけではない。天文学者は精密な測定を行って、水星軌道は、そのつどわずかに楕円の軸が回転していることを明らかにしていた。アインシュタインが一般相対性理論を使って、その小さな回転角を計算してみると、小さな誤差の範囲で、観測データとぴったり合う結果が得られた。それがわかったとき、アインシュタインの胸の鼓動が激しくなり、何かストンと腑に落ちるものがあった。「この理論の美しさは、ただごとではありません」と彼は書いた。最大の夢が叶ってアインシュタインは本望だったが、非常な努力を続けたせいで、身も心もくたくたに疲れ果てていた。しかし、やがてその疲労から回復したアインシュタインは、ふたたび量子に目を向ける。

10.1916年、光量子の確立

光量子を確立させたアインシュタインでしたが、それは「原子の量子論」に基づくものであり、古典物理学の因果律を否定するというアインシュタインにとっては、容易に受け入れることができない現実を突きつけられました。

『アインシュタインは、まだ一般相対性理論に取り組んでいた1914年5月にはすでに、フランク・ヘルツの実験は、原子のエネルギー準位の存在を立証し、「量子仮説の正しさを裏づける衝撃的な結果」だということを鋭く見抜いていた。そして早くも1916年の夏には、原子が光を放出・吸収するプロセスについて、ある「すばらしいアイデア」を得る。そのアイデアを手掛かりとして、彼は、「あっけないほど簡単に、プランクの式[黒体放射のスペクトルに関する法則であり、量子力学の基本法則のひとつ]」を導くことができた。その導出方法は、「これこそが正しい方法だと思える」ほどのものだった。まもなくアインシュタインは、「光量子は確立されたと思います」と言うまでに、光量子の実在性を確信するにいたる。だが、その確信を得るためには、代償が必要だった―古典物理学の厳密な因果律[原因があって結果が生じる]を捨て、原子の領域に確率を持ち込むことになってしまったのだ。 

アインシュタインは以前にも、別の方法でプランクの法則を導いたことがあった。しかし今度の方法は、ボーアによる原子の量子論から出発するものだった。

11.因果律の否定

因果律を否定するということは、我々が住むマクロの世界の中では考えられない現象を認めることであり、「因果律を捨てることになれば、わたしとしては非常に不本意です」。とアインシュタイン自身が語っているように、この事実は厳しく、辛いものであったと思います。

『原子の量子論の中核に偶然と確率が潜んでいることに気づいて、アインシュタインは嫌な気持になった。彼はもはや量子の実在性を疑ってはいなかったが、それと引き替えに、因果律を犠牲にしてしまったような気がしたのだ。彼はその三年後の1920年1月に、マックス・ボルンへの手紙に次のように書いた。「因果律のことではかなり悩みました。光が量子として吸収・放出されるプロセスは、因果律が完全に成り立つものとして理解できるのか、それとも統計的な要素はどこまでも残るのか?これについては自分の考えを口にする勇気がありません。しかし、完全に成り立つものとしての因果律を捨てることになれば、わたしとしては非常に不本意です」。

アインシュタインを悩ませたのは、手にもったリンゴから手を放しても、リンゴは落下せず、そのまま空中に浮かんでいるという状況だった。手を離れたリンゴは、地面に置かれている場合よりも不安定なので、すぐさま重力が作用して落下しはじめる。重力が原因となって、リンゴが落下するのだ。ところが、もしもそのリンゴが、励起状態[最もエネルギーの低い状態よりもエネルギーが高い状態]にある原子内の電子のように振る舞えば、リンゴは手を離れてもすぐには落下せず、そのまま空中に浮かんでいるだろう。そして、確率としてしか知ることのできない予測不可能なある時刻に、突如として落下しはじめるのだ。手を放した直後に落下する確率は大きいにせよ、何時間も浮かんでいる確率も、小さいとはいえゼロではないのだ。励起状態にある原子内の電子は、いずれ低いエネルギー準位に飛び降り、安定した基底状態に落ち着く。だがその遷移が正確にいつ起こるかは、運任せなのである。1924年になっても、アインシュタインはまだ、自分の明らかにした事実を受け入れることができずにいた。「光を照射された電子がジャンプする時刻ばかりか、飛び出すときの向きまでも、おのれの自由意志で選ばなければならないというのは、わたしには耐え難いことに思われます。もしも自然がそんな仕組みになっているのなら、わたしは物理学者でいるより、靴の修理屋になるか、あるいはいっそ賭博場にでも雇われたほうがましです」。』

12.アインシュタインとボーアの出会い 

1920年4月27日、アインシュタインは初めて会ったボーアに強い印象を持ちました。

『アインシュタインは、自分より六つも年下のこのデンマーク人を次のように評価していた。「彼は間違いなく、第一級の頭脳の持ち主です。きわめて緻密で洞察力があり、大きな枠組みを見失うことがありません」。アインシュタインがプランクへの葉書にそう書いたのは、1919年10月のことだった。プランクはそれを読んで、ますますボーアにベルリンに来てほしいと思うようになった。アインシュタインがボーアに惚れ込んだのは、もうだいぶ前のことである。1905年の夏、彼の頭のなかで吹き荒れていた創造性の嵐が静まりかけたとき、アインシュタインは、次に取り組むべき「本当に面白いこと」がないと思った。「もちろん、線スペクトルの問題はあるでしょう」と、彼は友人のコンラート・ハビヒトへの手紙に書いた。「しかし、これらの現象と、すでに解明されている現象とのあいだには、簡単な関係はないと思います。したがって、今しばらく、このテーマでは成果を期待できそうにありません」

攻略する機が熟した物理学の問題を鋭く嗅ぎわけることにかけて、アインシュタインの鼻は天下一品だった。線スペクトルの謎を見送ったアインシュタインが次に嗅ぎつけたのが、E=MC²だった。その式は、質量とエネルギーとが変換可能だということを意味していた。もっとも、全能の神が笑いながら、彼を「手玉にとっている」可能性もないとは言えなかったのだが。そんなわけで、1913年にボーアが、原子を量子化することにより、原子スペクトルの謎を解決して見せたときには、アインシュタインにはそれがまるで「奇跡のよう」に思われたのだった。

ボーアは、ベルリン駅から大学へと向かいながら、興奮と不安のために胃が痛くなりそうだった。しかしそんな緊張は、プランクとアインシュタインに会うとすぐに解けてなくなった。ふたりは挨拶もそこそこに物理学の話しを始め、ボーアもすっかりマイペースになった。プランクとアインシュタインは、これ以上違う人間はいないのではないかと思うほど正反対のタイプだった。プランクは、プロセイン流の気まじめさの権化のようだったのに対し、アインシュタインは、大きな目ともじゃもじゃの髪をして、つんつるてんのズボンを穿き、世間との関係はぎくしゃくしていたかもしれないが、自分自身とはうまく折り合いをつけているように見えた。ボーアは、ベルリン滞在中はプランク家に泊まるように招かれ、その申し出をありがたく受けた。』

『ボーアがコペンハーゲンに帰るとすぐに、アインシュタインは彼に手紙を書いた。「これまでの人生で、あなたほど、その存在自体がかくも大きな喜びを与えてくれた人はほとんどいませんでした。わたしは今、あなたのすばらしい論文を勉強しているところです。そして―難しい箇所に躓かないかぎりは―ほがらかで少年っぽい顔をしたあなたが、微笑みながら説明しているのを思い浮かべて楽しい気分になるのです」。ボーアはアインシュタインに、長く消えることのない深い印象を与えた。数日後、アインシュタインは、パウル・エーレンフェストに次のように書いた。「ボーアがベルリンに来ました。わたしもあなた同様、彼にすっかり魅了されました。彼は感じやすい子どものようで、夢の中にでもいるように、この世界を歩き回っているのです」。ボーアもアインシュタインに負けないぐらい熱烈に、この出会いが彼にとってどれほど大きな意味をもったかを、お世辞にも上手とは言えないドイツ語で懸命に伝えようとした。「このたび直接お目にかかってお話しできたことは、わたしにとって最大級の経験となりました。じかにお考えを聞いて、どれほど大きな霊感を受けたことか、あなたには想像もつかないでしょう」。ボーアはまもなく、もう一度それを経験することになった。アインシュタインがその八月、ノルウェーへの旅行からの帰りにコペンハーゲンに立ち寄り、ひとときボーアを訪ねたのだ。

ボーアに会った直後、アインシュタインはローレンツへの手紙に次のように書いた。「彼は大きな天分に恵まれ、しかもすばらしい人物です。優れた物理学者が人間的も立派だというのは、物理学にとってありがたいことですね。』

ボーアは1922年にノーベル賞を受賞しました。本書ではその喜びを二人に伝えたと記されています。ひとりは恩師であるラザフォードであり、もうひとりはアインシュタインでした。

『もうひとり、ボーアの頭から離れなかった人物が、アインシュタインだった。彼が1922年のノーベル賞を受賞する日に、アインシュタインも一年遅れて1921年のノーベル賞を受賞するという巡り合わせが、ボーアには嬉しく、また、ほっとさせられる成り行きでもあった。ボーアはアインシュタインにこう書いた。「わたしには過分な賞であることは十分承知していますが、これだけは申し上げたいと思うことがあります。それは、わたしが仕事をしたこの特別な分野において、あなたが成し遂げられた基本的な重要な仕事、およびラザフォードとプランクの仕事が、わたしがこの名誉に値すると見なされるよりも先に認められていて、本当によかったということです」

ノーベル賞の受賞者が発表されたとき、アインシュタインは船で地球の反対側に向かっていた。彼は十月八日に、身の安全に不安を感じながら、エルザとともに日本での講演旅行に出発したのだった。アインシュタインは後年、次にように述べた。「ドイツを長期間離れる機会が得られたのはありがたいことでした。そのおかげで一時的に高まった危険から逃れることができたからです」。彼がようやくベルリンに戻ったのは、1923年2月だった。当初の六週間の予定は、結局五カ月に及ぶ大旅行となり、ボーアの手紙を受け取ったのも旅先でのことだった。彼は帰国の途上でボーアに返事を書いた。「少しも大袈裟ではなく、[あなたの手紙を]ノーベル賞と同じくらい嬉しく思いました。とくに、わたしより先に受賞することを心配なさっていたとは、なんて可愛らしいのでしょう―あなたらしいことです。』

13.量子との格闘

アインシュタインにとっても、ボーアにとっても量子は想像を絶するような難しい問題でした。

『アインシュタインとボーアは、ベルリンとコペンハーゲンで会ってからの二年間、それぞれのやり方で量子との格闘を続けた。しかしふたりとも、しだいにその戦いに疲れを感じはじめていた。「気を散らされることが多いのも、まんざら悪いことではないのでしょう」と、アインシュタインは1922年3月にエーレンフェストへの手紙に書いた。「さもなければ、量子の問題のために、わたしは精神病院に入院していたかもしれませんから」。その一カ月後、ボーアはゾンマーフェルトにこう語った。「ここ数年、科学上の孤立感をひしひしと感じています。体系的に量子論の原理を作ろうと力のかぎり頑張っているのですが、ほとんど誰にも理解してもらえないように思います」。しかし、そんな孤立の時代も終わろうとしていた。ボーアは1922年6月に、ドイツのゲッティンゲン大学で、のちに「ボーア祭り」として知られることになる、十一日間で七回の連続講義という一大イベントを敢行したのだ。』

14.ボーア祭りとアインシュタインの命の危機

アインシュタインには相対性理論を拡張するという命題があり、また光量子には因果律を否定しなければならないという側面がありました。また、数学が求められるという要因もアインシュタインにとっては望ましいものではありませんでした。一方、ボーアには古典物理学へのこだわりはアインシュタインほどではなく、それよりも量子とは何かということを明らかにしたいという気持ちが強かったように思います。その強い気持ちがこの難題に立ち向かわせ、その使命感が原動力となって、生涯を貫いたのではないかと思います。

『ボーアが原子内電子の「殻模型」について話をするというので、老若とりまぜて百人を超える物理学者たちがドイツ各地から集まってきた。殻模型とは、原子内の電子がどのように配置されているかに応じて、その元素の周期表内での位置と、元素のグループ(類)が決まるという、ボーアの最新理論だった。彼は、原子核の周囲を、ちょうどタマネギの鱗片のように、軌道殻というものが取り巻いているという考えを打ち出した。それぞれの殻は、じっさいには電子軌道の集まりで、その軌道に含まれる電子の個数には上限がある。化学的な性質を共有する元素は、もっとも外側の殻に含まれる電子の数が同じになっている、とボーアは論じた。』

『アインシュタインは、ゲッティンゲンでのボーアの連続講義には出席しなかった。ユダヤ人だったドイツ外相が殺害されたことで、命の危険を感じていたからだ。有力な実業家だったヴァルター・ラーテナウは、外相になってわずか数カ月後の1922年6月24日の白昼に、銃弾に倒れた―第一次世界大戦後に起こった極右による政治的暗殺の、三百五十四番目の犠牲者だった。アインシュタインは、政府内のそんな目立つ地位に就くべきでない、ラーテナウに強く忠告した。人間のひとりだった。ラーテナウが外相に就任すると、右翼新聞はそれを、「国民に対する前代未聞の挑発!」と書きたてた。

「ラーテナウの暗殺という恥ずべき事件が起こって以来、こちらでは気が休まるときがありません」とアインシュタインはモーリス・ソロヴィンに書いた。「わたしはいつも警戒しています。講義は取り止め、公式には不在になっていますが、じっさいにはずっとここにいます」。信頼できる筋から、自分が第一の暗殺目標になっていることを知らされたアインシュタインは、一市民として静かな暮らしを送るため、プロセイン科学アカデミーのポストを辞任することも考えているとマリー・キュリーに打ち明けた。若いころは権威に反発していた彼が、今では権威ある人間になっていた。彼はもはやひとりの物理者ではなく、ドイツ科学のシンボルであると同時に、ユダヤ人のシンボルでもあったのだ。』

ボーアが提唱した電子の殻模型には、厳密な数学的論証はありませんでした。それでも、ボーアのアイデアが評価されたのは、1922年12月のノーベル賞受賞講演で、原子番号七十二番の未知の元素(のちにハフ二ウムと名づけられる元素)は「希土類」ではないという予測が正しかったからです。しかしボーアの殻模型の背後には、いかなる組織原理も判断基準もなく、それは膨大な化学的・物理的データにもとづいて、周期表の各グループの化学特性のほとんどすべてを説明することができるという、独創的な思いつきにすぎませんでした。

ボーアが経験的データから作り上げた原子内電子の殻模型に、理論的基礎となる組織原理、「排他原理」を発見したのは、ウォルフガング・パウリでした。

『ボーアの新しい原子モデルで、電子がすべて最低エネルギー準位に集まらないように殻の占拠状態を管理していたのは、パウリの排他原理だったのだ、排他原理は、周期表の中の元素がなぜあのような配列になっているのか、そしてなぜ、化学的に不活性な希ガスで殻が閉じるのかに説明を与えた。しかし、これほどみごとな成功を収めたにもかかわらず、パウリは1925年3月21日に「ツァイトシュリフト・フュール・フィジーク」に発表した「原子内電子の群の閉鎖と、スペクトルの複雑な構造との関係について」という論文の中で、「この規則がなぜ成り立つのかについて、より詳しい理由を与えることはできない」と述べざるをえなかった。』

15.スピンという量子的な概念

パウリが提唱した排他原理、しかしながらパウリ自身が説明できないとしていた課題は、スピンという量子的な概念によって明快な物理的根拠が与えられました。

『原子内電子の位置を指定するために必要な量子数は、なぜ三つではなく四つなのだろうか?ボーアとゾンマーフェルトの実り多い仕事がなされて以来、原子核の周囲で軌道運動をしている原子内電子は三次元空間を動き回っているのだから、その運動を記述するためには三つの量子数が必要なのは当然のことと受けとめられていた。しかし、パウリの四つ目の量子数には、どんな物理的基礎があるのだろう?

1925年の夏も終わろうというころ、ふたりのオランダ人ポスドク、サムエル・ハウトスミットとへオルヘ・ウーレンベックは、パウリが提案した「二価性」には、それまでの量子数とはまったく異なる特徴があることに気がついた。すでに知られていた三つの量子数が、n、κ、mはそれぞれ、軌道上にある電子の角運動量[回転の勢いを表す物理量]、その軌道の形、空間内の向きを指定するものだったが、「二価性」は電子に内在する性質だったのだ。ハウトスミットとウーレンベックはその性質を、「スピン(回転)」と名付けた。くるくると回転する物体をイメージしがちなこの命名は不幸だったが、電子の「スピン」は完全に量子的な概念であり、原子構造の理論に付きまとっていたいくつもの問題を解決し、排他原理に明快な物理的根拠を与えるものだった。

『1925年の夏中をかけて、ハウトスミットは原子の線スペクトルについて知る限りのことをウーレンベックに教え込んだ。その後、ふたりが排他原理について論じ合っていたときのことである。ハウトスミットは排他原理を、原子スペクトルの混乱状態を少々整理するための場当たり的な規則のひとつにすぎないと考えていたのに対し、ウーレンベックはあるアイデアを思いついた―そのアイデアを、パウリはすでに却下していたのだが。

電子は、上下、前後、左右の方向に運動することができる。これら三通りの運動の仕方を、物理学者は「自由度」と呼んでいる。量子数はいずれも電子の自由度に対応しているのだから、パウリの新しい量子数は、電子は三つの自由度以外に、別の自由度をもつということを意味しているに違いない、とウーレンベックは確信した。そして彼は、その四つ目の量子数は、電子の回転を意味しているのだろうと考えたのだ。しかし、古典物理学でいう回転は、三次元空間の中の回転運動だから、もしも原子が古典物理学的にクルクル回っているだけなら、地球が自転軸のまわりに回転しているのと同じく、四つ目の自由度を持ち込む必要はない。パウリは、自分が導入した新しい量子数は、何か「古典的な考え方では記述できないもの」を表しているはずだと論じた。』

『ボーアは磁場の問題を挙げて、自分はスピンには反対だと言った。すると驚いたことにエーレンフェストが、その問題はアインシュタインが相対性理論を使ってすぐに解決したというではないか。のちにボーアは、アインシュタインの説明は「まさしく啓示」だったと述べた。かくしてボーアは、電子スピンにどんな問題があろうと、いずれ近いうちにすべて克服されるだろうと確信した。ローレンツの反論は、彼が精通している古典物理学にもとづくものだった。しかし電子のスピンは純粋に量子的な概念であり、ローレンツが指摘した問題は、実はそれほど深刻なものではなかったのだ。さらに、イギリスの物理学者リーウェリン・トーマスがふたつ目の問題を解決した。トーマスは原子核のまわりで軌道運動する電子の相対運動の計算で、二重項の分離幅に2の因子がひとつ余分にかかっていたことを明らかにしたのだ。「そのときから、われわれの苦悩は終わったという確信がゆらいだことはありません」とボーアは1926年3月に手紙を書いた。』

注)電子のスピンというアイデアを最初に提唱したのは、ハウトスミットとウーレンベックではなく、21歳のドイツ系アメリカ人のラルフ・クロー二ヒでした。これは当時、パウリがクロー二ヒのアイデアを否定したためでした。

16.古典物理学と量子物理学との架け橋

古典物理学と量子物理学の架け橋という考え方は、統合ということを常に考えていたアインシュタインには難しいことでした。ボーアがこのような考え方を持つことができたのは、量子とは何かを明らかにすることに集中し、あらゆる可能性を排除せず、白紙から考えを進めたこと、そして、パウリやハイゼンベルク、ボルンといった数学に長けた優秀な科学者の協力を得られたことが大きな要因だったと思います。

『この動乱のなかでも、アインシュタインはボーアによる一連の論文を読んでいた。1922年3月に「ツァイトシュリフト・フュール・フィジーク」に発表された、「原子の構造と、元素の物理的、化学的性質」と題する論文もそのひとつだった。それから半世紀近く経て、アインシュタインは当時を振り返って次のように述べた。「原子の内部にある電子の殻というアイデアは、その科学上の重要性という点からも、当時のわたしには奇跡のように思われました―そしてその思いは今も変わりません。それは思考の領域における音楽性を、もっとも高度なかたちで現したものでした」。じっさいボーアがやったことは、科学というよりはむしろ芸術に近かった。原子の線スペクトルや、それぞれの元素の化学的性質など、さまざまな分野からかき集めた証拠を組み合わせて、ボーアはひとつの原子像を作り上げた。あたかもタマネギの鱗片のように、電子の殻をひとつひとつ重ねていき、周期表の中のすべての元素を再構成したのである。

そんなアプローチの核心にあったのは、ボーアが抱いていたひとつの確信だった。原子のスケールで成り立つ量子規則から得られる結論はすべて、古典物理学が支配するマクロなスケールでの観測結果と矛盾してはならないと彼は信じていたのだ。ボーアはその確信を「対応原理」と名付け、それを使って原子スケールで考えうる可能性のうち、マクロな領域に拡張したときに古典物理学の結果につながらないものを捨てた。1913年以降、量子物理学と古典物理学のあいだに口を開けていた裂け目にボーアが橋を架けることができたのは、その対応原理のおかげだった。ボーアの助手だったヘンドリク・クラマースがのちに述べたように、ボーアのそんな方法論のことを、「コペンハーゲンの外では通用しない魔法の杖」と呼ぶ者もいた。みんなはその杖を振りこなせずに悪戦苦闘していたが、アインシュタインはそこに、自分に匹敵する魔術師の仕事を見て取った。

周期表に関するボーアの理論にしっかりした数学的基礎がないことを不満に思う者はいたにせよ、彼が次々と打ち出すアイデアに感心しない者はいなかった。また、さまざまな未解決問題について理解が深まったのも確かだった。ボーアはコペンハーゲンに戻るとすぐに、ある物理学者への手紙のなかで、「ゲッティンゲン滞在は何もかもがすばらしく、とても勉強になりました」と述べた。「みなさんがわたしに示してくださった友情がどれほど嬉しかったか、とても言葉では言い表せません」。もはや彼は、理解されないとか、孤立しているなどと感じることはなくなった。』

17.量子論から量子力学へ

“量子のスピン”という純粋に量子的な概念は、既存の物理学という枠組みの中でそのカケラを「量子化」するという方法には限界があることを明らかにしました。

『プランクの黒体放射の法則からアインシュタインの光量子へ、さらにボーアの電子の量子論からド・ブロイの物質の波と粒子の二重性へと、四半世紀以上にわたって繰り広げられてきた量子物理学の進展は、量子的概念と古典物理学との不幸な結婚から生み出されたものだった。しかしその結婚は、1925年までにはほとんど破綻していた。アインシュタインは1912年の5月にはすでに、「量子論は、成功すればするほどますます馬鹿馬鹿しく見えてきます」と書いた。求められていたのは新しい理論―量子の世界で通用する新しい力学だった。

「1920年代半ばに成し遂げられた量子力学の発見は、十七世紀に近代物理学が誕生して以来、物理理論の分野に起こったもっとも意義深い革命だった」と、アメリカのノーベル賞受賞者スティーブ・ワインバーグは述べた。』

『ハウトスミットとウーレンベックは、それまでの量子論はすでに適用限界に突き当たっているということを、はじめて具体的な証拠で示した。理論家はもはや、古典物理学という足場の上に立ち、既存の物理学のカケラを「量子化」するという方法で間に合わせるわけにはいかなくなった。なぜなら電子のスピンは、それに対応する古典物理学の概念のない、純粋に量子的な概念だからである。パウリとふたりのオランダ人がスピンをめぐって成し遂げた発見は、「古い量子論」が達成した数々の偉業の締めくくりとなる仕事だった。あたりは危機感が漂っていた。物理学が置かれた状態は、「方法論という観点から言えば、論理的に一貫した理論というよりはむしろ、仮説、原理、定理、計算方法の寄せ集めと言うべき嘆かわしい状況」だった。物理学の進展が、科学的な論証によってではなく、芸術的な推理や直観によって起こることもしばしばだったのだ。

パウリは排他原理発見から半年ほど経った1925年の5月に、「現在、物理学はまたしても滅茶苦茶です。ともかくわたしには難しすぎて、自分が映画の喜劇役者かなにかで、物理学のことなど聞いたこともないというならよかったのにと思います」とクロー二ヒへの手紙に書いた。「ボーアが今度もまた、何か新しいアイデアを出して、わたしたちを救ってくれるのだろうと期待しています。いますぐやってくださいと頼みたい気持ちです。彼によろしくお伝えください。わたしに対する親切と辛抱強さ、そのすべてにお礼申します、と」。しかしそのボーアは、「われわれが現在直面している理論上の問題」に対しては、何の答えも持ち合わせていなかった。その春、誰もが待ち望む「新しい」量子論―量子力学―をひねり出せるのは、量子の手品師ぐらいだろうと思われた。』

18.量子の手品師

量子に関わる多くの物理学者が待ち望んだ量子力学、その領域にたどり着いた「量子の手品師」は、ドイツの神童、ヴェルナー・カール・ハイゼンベルクでした。

『「運動学的および力学的な諸関係についての量子論的再解釈」は、誰もが待ち望み、ある者たちにとっては自分が書きたかった論文だった。「ツァイトシュリフト・フュール・フィジーク」の編集人がその論文を受け取った日付は、1925年7月29日。科学者たちが「アブストラクト」と呼ぶ「前書き」のなかで、著者は大胆にも、次のような壮大な計画を示した―その論文の目標は、「原理的には観測可能であるような量のあいだの関係だけにもとづいて、量子力学の理論的基礎を確立することである」と。十五ページほど先でその目標は達成され、著者ヴェルナー・ハイゼンベルクは未来の物理学の基礎を築いた。この年若いドイツの神童は、いったい何者なのだろうか?彼はいかにして、ほかの人たちができなかったことを成し遂げたのだろうか?』

※ヴェルナー・ハイゼンベルクは1901年12月5日、ドイツ、バイエルン州の町ヴュルツブルクに生まれ、若干26歳でライプツィヒ大学の教授になりました。

『ハイゼンベルクの関心を、アインシュタインの相対性理論から、彼がのちに名をなすことになる量子論に向けさせたのは、相対性理論に関するみごとな解説を書いている最中のパウリだった。彼は、この先大きな実りがある分野は、むしろ原子の量子論だと言ったのだ。「原子物理学の分野には、まだ解釈されていない実験結果がどっさりあるんだ」とパウリは言った。「ある領域では、自然界の性質を明らかにしてくれる証拠だと思えるものが、別の領域で得られた証拠と矛盾するように見える。そのせいで、証拠同士の関係についての統一的な描像はまだ半分も描けていないのさ」。これから先まだ何年も、誰もが「深い霧の中で手さぐり」することになるだろう、とパウリは言うのだった。ハイゼンベルクはそんな彼の言葉を真剣に聞きながら、あらがいようもなく量子の世界に引き寄せられていった。』

ボーアとアインシュタイン1 

第五回ソルヴェイ会議は、「電子と光子」をテーマとして、1927年の10月24日から29日にかけて、ベルギーの首都ブリュッセルで開催された。その会議に参加した人たちの集合写真には、物理学の歴史上、もっとも劇的だった時代が濃縮されている。招待された29人の物理学者のうち、最終的には17人がノーベル賞を受賞することになるこの会議は、歴史上、もっとも輝かしい知性の邂逅のひとつだった。そして、また、物理学の黄金時代―ガリレオとニュートンによってその幕を切って落とされた十七世紀の科学革命以来、科学的な創造力がもっともめざましく発揮された時代―の終焉を告げる出来事だった。』

画像出展:「aucfan

著者:マンジット・クマール

発行:2013年3月

出版:新潮社

以下は、本書の巻末に掲載されている年表をベースに、8人の物理学者とその他に分けて作ったものです。その8人は左から、マックス・プランク、エルヴィン・シュレーディンガー、アルベルト・アインシュタイン、ニールス・ボーア、マックス・ボルン、ルイ・ド・ブロイ、ヴォルフガング・パウリ、ヴェルナー・ハイゼンベルクになります。拡大して頂ければ文字の確認はできると思います。

右端の「その他」の1972年、1982年、1997年、2007年の欄に、ジョン・クラウザー博士アラン・アスペ博士アントン・ツァイリンガー博士の名前が出ています青字)、まさにこの業績によって、2022年のノーベル物理学賞を受賞されました。

2022年のノーベル物理学賞に「量子もつれ」の研究者3人

画像出展:「讀賣新聞オンライン

ご参考:Youtube“【量子力学】この宇宙の真実知りたくない人は見ないでください...『シンクロニシティ 科学と非科学の間に』by ポール・ハルパーン(開始~8分30秒の中で「量子もつれ」を解説されています。なお動画は19分です)

量子物理学の学術的な知識がゼロに等しい私がまとめた今回のブログは怪しげです。また、身の程知らずのコメントに「いいんだろうか?」という不安な気持ちもあります。しかしながら、私にとっては大きな前進となりました。今まで、興味だけで数冊の量子論、量子力学の本に挑戦してきて分かったことは、量子は存在すること、量子は古典物理学(ニュートン力学とマクスウェル電磁気学)の常識を超えた未知の領域にある不思議なものだということです。

天才物理学者が一堂に会した第五回ソルヴェイ会議の中でも、アルベルト・アインシュタインの圧倒的存在感は、この世に並ぶ者がない孤高の天才を証明しているように思います。また、科学者の論争を超えた視点に立ち、あらたな一歩を世界に示したニールス・ボーアの「コペンハーゲン解釈」も、量子力学の発展には欠くことのできないものだったと思います。

プランク、ボルン、パウリ、ハイゼンベルク、シュレーディンガー、ウーレンベック等の傑出した才能と強烈な個性の妥協なきぶつかり合いが量子論を磨き上げ、古典物理学とは異なる量子物理学を確立できたのだと思います。

そして、その中心にいたのは、使命感に燃え生涯をかけたニールス・ボーアと、一般相対性理論を発見し統一場理論という理想を追求し続けたアルベルト・アインシュタインだったと思います。

量子論や量子力学が難解なのは間違いないのですが、以下のサイトの最後に書かれている通り、これらは、既に生活の中に深く入り込んでいます。その代表的なものが半導体です。

画像出展:「量子力学と私たちの暮らし(無印良品)」

リニア新幹線に使われる「超伝導モーター」や「量子コンピュータ」など、今後も「量子力学」にもとづく先端技術は次々と生まれ、暮らしの中に入ってくることでしょう。不思議は不思議のまま置いとくとして、「量子力学」が今後の私たちの暮らしを大きく変えていくことだけは間違いなさそうです。

1970年代後半、半導体は「産業の米」と呼ばれていました。そして、2030年日本の半導体市場は100兆円規模まで拡大すると言われています。量子力学の発見なくして現代の進歩はあらず、人類最大の発見と言っても過言ではないと思います。

ブログは20世紀初頭の量子革命の論争を、主にボーアとアインシュタインを中心にまとめました。見出しに続き、気づいたことや感じたことを最初に書いています。

目次

プロローグ 偉大なる頭脳の邂逅

第一部 量子

第一章 不本意な革命―プランク

第二章 特許の奴隷―アインシュタイン

第三章 ぼくのちょっとした理論―ボーア

第四章 原子の量子論

第五章 アインシュタイン、ボーアと出会う

第六章 二重の貴公子―ド・ブロイ

第二部 若者たちの物理学

第七章 スピンの博士たち

第八章 量子の手品師―ハイゼンベルク

第九章 人生後半のエロスの噴出―シュレーディンガー

第十章 不確定性と相補性―コペンハーゲンの仲間たち

第三部 実在をめぐる巨人たちの激突

第十一章 ソルヴェイ 1927年

第十二章 アインシュタイン、相対性理論を忘れる

第十三章 EPR論文の衝撃

第四部 神はサイコロを振るか?

第十四章 誰がために鐘は鳴る―ベルの定理

第十五章 量子というデーモン

以下はブログの目次です。なお、ブログは6つに分けています。

1.量子の発見

2.「奇跡と年」と光量子説

3.論争を分けたアインシュタインの価値観

4.アインシュタインの数学

5.“量子テレポーテーション”

6.ボーアの人柄と信念

7.原子の量子論

8.相対性理論>量子論

9.一般相対性理論

10.1916年、光量子の確立

11.因果律の否定

12.アインシュタインとボーアの出会い 

13.量子との格闘

14.ボーア祭りとアインシュタインの命の危機

15.スピンという量子的な概念

16.古典物理学と量子物理学との架け橋

17.量子論から量子力学へ

18.量子の手品師

19.古典物理学からの解放

20.観測可能な量だけを使って作った理論

21.(A×B)-(B×A)≠ゼロ

22.量子物理学の新時代の幕開けを告げる論文

23.行列演算と量子力学

24.論理的に矛盾のない量子力学を定式化した「三者論文」

25.守備範囲の広い理論家

26.シュレーディンガーが「作った」波動方程式

27.ハイゼンベルクの難解な行列力学とシュレーディンガーの直感的な波動力学

28.数学的には等価だが物理的世界が異なる波動力学と行列力学

29.波動力学の限界

30.古典的確率とは異なる量子的確率を使って波と粒子を統合する方法

31.アインシュタインとハイゼンベルク

32.アインシュタインにとっての行列力学

33.ボーアとハイゼンベルク(量子の世界のあいまいさの核心、波と粒子の二重性の問題)

34.ハイゼンベルクの不確定性原理

35.不確定性原理を表す式、ΔpΔp≧h/2πとΔEΔt≧h/2π

36.波と粒子の二重性を受け入れるための相補性

37.1927年9月、イタリアのコモで開催された国際物理学会

38.1927年10月24日~10月29日第五回ソルヴェイ会議

39.ボーア(コペンハーゲンメンバー)とアインシュタインの議論

40.「コペンハーゲン解釈」という命名は1955年(28年後)

41.アインシュタインの統一場理論とEPR論文

42.理論と哲学的立場

43.統一場理論

1.量子の発見

量子の発見者はマックス・プランクです。それは1900年、量子は粒子と波の性質をあわせ持った、とても小さな物質でエネルギーの単位といわれています。

 『1900年にプランクは、光をはじめあらゆる電磁放射のエネルギーは、ある大きさの塊でしか、物質に吸収されたり物質から放出されたりできないと考えざるをえなくなった。「量子」とは、そんなエネルギーの塊に対し、プランクが与えた名前だった。「エネルギー量子」という考え方は、確立されて久しいエネルギー観―すなわち、エネルギーはあたかも蛇口から流れ落ちる水のように、なめらかに途切れなく放出されたり、吸収されたりするという考え―と、きっぱり手を切る過激な提案だった。ニュートン物理学に支配された巨視的な日常の世界では、水がポタリポタリと雫になって蛇口から滴ることはあっても、エネルギーがさまざまなサイズの滴として交換されることはなかった。だが、原子やそれ以下の階層は、量子の支配する領域なのだ。

やがて、原子の内部に存在する電子についても、そのエネルギーは「量子化」されていることが明らかになった―原子内の電子は、とびとびの値のエネルギー量しかもつことができないのである。同様のことは、エネルギー以外の物理量についても言えた。微視的な領域は、ぶつぶつに切り離された離散的な世界であって、単に日常世界をスケールダウンしただけではないことが明らかになったのだ。日常の生活では、点Aから点Cに移動するためには、どこか中間の点Bを通過しなければならない。ところが微視的な世界では、原子内の電子はエネルギー量子を放出したり吸収したりすることで、いかなる中間点も通過することなく、ある場所で消え、次の瞬間には別の場所にひょっこり現れることができるのだ。そんな現象は、連続的な古典物理学で扱える範囲を超えていた。それはあたかも、ロンドンで謎のように消えた物体が、次の瞬間にはパリ、あるいはニューヨークやモスクワに現れるようなものだった。』

2.「奇跡と年」と光量子説

アインシュタインが成し遂げた1905年は「奇跡の年」と言われています。それは学術誌に寄稿した四篇の論文です。

1)光量子説

2)原子の大きさを求める新しい方法を提案するもの

3)ブラウン運動―液体中に浮かんだ微粒子がランダムに動きつづける運動―を説明するもの

4)相対性理論の構想を示したもの

アインシュタイン自身が「真に革命的」だと言ったのは、相対性理論ではなく、光と放射に関するプランクの量子概念を拡張した仕事のほうだった。アインシュタインにとって相対性理論は、すでにニュートンやその他の人びとによって確立された考えを、「修正した」だけにすぎなかったのに対し、光の量子という新しい概念は、完全に彼の独創であり、従来の物理学との断絶の大きさという点では、もっとも過激だと考えていたのだ。アマチュアの物理学者とはいっても、そんな説を唱えるのは冒瀆的なことだった。

それまで半世紀以上にわたり、誰もが光は波だと思っていた。ところがアインシュタインは、「光の生成と変換に関する、ひとつの発見法的観点について」と題したその論文で、光は波ではなく、粒子状の量子でできているという説を打ち出したのだ。』

●光は波であるというのが当時の常識でした。アインシュタインの「光量子仮説」はマックス・プランクが提唱した「エネルギー量子仮説」を拡張し、光はプランク定数と振動数を掛け合わせたエネルギーを持つ粒子(光量子)の集合体であるとするものでした。この革新的な仮説を信じる物理学者はほとんどおらず、アインシュタインの考えは孤立していましたが、18年後の1923年、アーサー・コンプトンによる「コンプトン効果」により「光量子仮説」は完全に立証されました。なお、この事実はニールス・ボーアにとっても衝撃的なものでした。

ご参考:“光量子仮説とは”(【物理解体新書】より)

ご参考量子仮説と光量子仮説の違い(ミクロの世界でエネルギーが不連続であることを解明したのが量子仮説。光は波と粒子の二重性があることを示したのが光量子仮説です)

ご参考:“光電効果と光量子仮説

3.論争を分けたアインシュタインの才能と価値観

スイス特許局の3年間では「多面的に考える」訓練になったという話をされています。アマチュア物理学者時代を経て、世界最高の物理学者の一人となったアインシュタインの無二の才能は、「気味悪いほどの洞察力」と「本質を見抜く嗅覚」であり、最後まで譲ることがなかったのは、物理学の「実在性」だったようです。

『「彼(アインシュタイン)は、良く知られたなにげない事柄の陰に隠れて、みんなに見逃されていた意味を見抜くという、天賦の才に恵まれていた」と述べたのは、アインシュタインの友人で、やはり理論物理学者のマックス・ボルンである。ボルンはさらにこう続けた。「彼をわれわれと隔てていたのは、数学の技量ではなく、自然の仕組みを深く見通す、気味が悪いほどの洞察力だった」。アインシュタインは、数学では直観があまり働かず、真に重要なことを、「本質的でないことから」選り分けることができないと考えていた。しかし物理学になると、彼の嗅覚は誰にも負けなかった。物理学に関するかぎり、すでに学生時代には、「基礎につながる問題だけを嗅ぎつけ、その他の問題―こまごましたことで頭を埋め尽くし、重要なことを見えなくさせるたぐいの問題―から選り分けることができるようになった」と、アインシュタインは述べている。』

4.アインシュタインの数学

1896年10月、アインシュタインは理数科教員養成課程に入学しました。同期は11人、うち数学と物理学の教員になろうとする学生はアインシュタインを含め5人でした。その中で唯一の女性であった、ミレヴァ・マリチは後にアインシュタインの妻となりました。また、半世紀に渡った量子力学との格闘では、アインシュタインの数学がひとつのターニングポンとになったように思います。

 『ミュンヘン時代には、彼の聖典となった小さな幾何学の本をむさぼるように読んだアインシュタインだったが、数学そのものにはすでに興味を失っていた。「ポリ」で数学を教えていたヘルマン・ミンコフスキーは当時を振り返って、アインシュタインは「怠け者」だったと言った。アインシュタインは後年、そうなったのは数学が嫌いだったからではなく、「物理学の基本原理についての深い知識に近づくことは、数学的方法と密接に結びついている」ということが、当時はわからなかったためだと語った。その結びつきを、彼はその後の研究生活で苦労して知ることになる。彼は、「もっとしっかり数学を勉強しなかった」ことを悔やんだ。』

ご参考数学と物理の絡み合い PDF43枚

5.“量子テレポーテーション”

「1913年7月に発表された第一部の論文([原子と分子の構成について]という同一タイトルの三部作)は、量子を原子の内部にじかに持ち込んだ、真に革命的な仕事だった」との高い評価を受けています。ボーアが気づいた奇妙な性質は“量子テレポーテーション”と呼ばれています。これは、量子状態を転送する技術であり、古典的な情報伝達手段と量子もつれの効果を複合的に利用して行われます。

 『ボーアは、電子の量子飛躍には、非常に奇妙な性質があることに気がついた。飛躍しているときの電子の所在については、何も言えないということだ。軌道間の飛躍―エネルギー準位間の遷移―は、瞬間的に起こらなければならない。さもないと、軌道から軌道へと移動するあいだに、電子はエネルギーを放出してしまうからだ。ボーアの原子の内部では、電子は軌道と軌道のあいだの空間には存在することができない。電子はまるで魔法のように、ある軌道上から消えた瞬間、別の軌道に姿を表すのだ。

“量子テレポーテーション”の実験は84年後の1997年、フランチェスコ・デマルティ―率いるローマ大学の研究チームが成功させました。

ご参考Youtube“【簡単解説】数式なしで理解したい!「量子テレポーテーション」や「量子もつれ」の原理や仕組み、方法を初心者にも分かるように解説! (9分33秒~13分33秒に量子テレポーテーションについて解説されています。難解な内容を分かりやすく解説されていると思います)

6.ボーアの人柄と信念

ボーアの論文([原子と分子の構成について]という同一タイトルの三部作)制作に関して、指導教授のような存在であったアーネスト・ラザフォードに相談する場面があるのですが、ボーアの人柄や研究に対する信念(執念)が出ている興味深いものでした。

 『もうひとつ、小さな問題ではあったが、ボーアが深く悩んだ指摘があった。ラザフォードはその論文を、「切り詰めなければ」ならないと言ったのだ。「論文が長いと、じっくり読んでいる余裕がない読者の腰が引けてしまう」というのだ。なんなら英語を直すのを手伝おう、と述べた後、ラザフォードは追伸として、次のように書いた。「不必要と思う部分は、わたしの判断で削除してもかまいませんね? 返事待ちます」

それを読んでボーアは恐れおののいた。単語ひとつ選ぶのにも苦しみ抜き、果てしなく推敲を重ねる彼にとって、たとえそれがラザフォードであろうとも、自分以外の人間が論文に手を加えるなどとは、考えることさえできなかったのだ。二週間後、ボーアは変更と追加を書き込み、さらに長くなった改訂版の原稿を送った。ラザフォードはボーアの改訂を、「良くできているし、妥当な改訂のように思われます」と言ってくれたが、このときもやはり論文を短くするように強く求めた。その二度目の返事を受け取る前に、ボーアはラザフォードに、今度の休暇にマンチェスターに伺いますと告げた。

ボーアが玄関の扉をノックしたとき、ラザフォードは友人のアーサー・イヴをもてなしているところだった。イヴの回想によれば、ラザフォードはすぐに、その「ひょろりとした男の子」を連れて書斎に行き、その場に残ったラザフォード夫人が、今のはデンマーク人で、夫は「あの若者の仕事を、とても高く買っているのです」と言ったという。それから数日のあいだ、夕方何時間も議論に議論を重ね、ボーアは一字一句省くことなどできないと懸命に訴えた。ボーアが後年語ったところでは、ラザフォードはその間、「ほとんど天使のような忍耐力を示した」という。

やがてラザフォードは疲労困憊し、ついに折れた。のちにラザフォードは、この一件を友人や仲間の物理学者たちに話して聞かせるようになった。「彼が論文の一字一句を大切にしていることが良くわかったよ。すべての文、すべての言い回し、すべての引用を、断じて捨てるつもりがないんだ。あの覚悟にはほとほと感心させられたね。どれもこれも、明確な理由があって書いているのだ。わたしははじめ、省略できる文はたくさんあると思っていた。しかし彼の説明を聞いているうちに、全体がきわめて緊密に織りあげられているので、変更できる箇所はひとつもないのだということがわかったよ」。皮肉にも、ボーアはずっと後になって、「議論の提示のしかたが明確でない」というラザフォードの意見は正しかったと述べた。』 

7.原子の量子論

ボーアの論文は画期的でしたが、特に当時の常識に照らし合わせると難しい要素を数多く含んでいました。

 ボーアは、古典物理学と量子力学を混ぜこぜにして、自分の原子モデルを急ごしらえに組み立てた。その過程で、広く認められていた物理学の常識を破るようなことを提唱した。まず、原子内電子は、定常状態という、特定の軌道しか占めることができないということ。つぎに、定常状態にある電子は、エネルギーを放射できないということ。そして、原子は多数ある飛び飛びのエネルギー状態のうち、どれかひとつの状態を占めるということだ。それらの状態のうち、エネルギーがもっとも低い状態を、「基底状態」という。そして電子は、「どういうわけか」、エネルギーの高い定常状態から低い定常状態へと飛び降りることができ、そのエネルギー差をエネルギー量子として吐き出す、というのだった。しかし彼の原子モデルは、水素原子のいくつかの性質―水素原子の半径など―を正しく予測することができたし、線スペクトルが生じる理由を物理的に説明することもできた。のちのラザフォードは、原子の量子論は、「物質に対する頭脳の勝利であり」、ボーアがその謎を解明するまでは、ラザフォード自身、線スペクトルの謎が解けるまでには、「何百年もかかるだろう」と思っていたと述べた。

ボーアの仕事がどれほど大きな事件だったかを知るためには、原子の量子論が引き起こした反応を見ればよい。1913年9月12日、英国科学振興協会(BAAS)の第八十三回年会が、バーミンガムで開かれた。それは原子の量子論が公の場で論じられる最初の機会となった。聴衆の中にはボーア自身もいたが、彼の仕事への反応は冷ややかで微妙だった。J・J・トムソン[1897年、電子を発見した]、ラザフォード、レイリー、ジーンズという錚々たる顔ぶれがそろい、外国からの著名な参加者には、ローレンスやキュリーもいた。ボーアの原子モデルについて強く意見を求められたレイリーは、「70歳を過ぎた者は、新しい理論について性急にものを言うべきではないでしょう」と社交辞令を使った。しかしそんなレイリーも、親しい人たちに対しては、「自然はそんなふうには振る舞わない」し、「そんなことが現実に起こっているとは考えにくい」と語った。トムソンは、ボーアがやったように原子を量子化する必要なないと言い、ジェームズ・ジーンズは、失礼ながら賛成しかねる、という言い方をした。ジーンズは、聴衆でいっぱいの会場で行った講演のなかで、ボーアのモデルが正当化されるためには、「非常に重みのある成功」を収める必要があるだろうと述べた。

ヨーロッパ大陸では、原子の量子論は激しい反発を買った。ある白熱した議論のさなか、マックス・フォン・ラウエは、「まったくのナンセンスだ! マクスウェルの方程式はいかなる状況下でも成り立つ。円軌道を描く電子は、放射を出さなければなりません」と述べた。ゲッティンゲンにいたボーアの弟ハーラルは、当地では彼の仕事に大いに関心が寄せられているが、彼の仮設はあまりに「大胆」かつ「荒唐無稽」だと思われているようだ、と教えてくれた。

ボーアの理論は、初期にひとつの成功を収め、アインシュタインを含めて何人かの支持を得ることができた。』 

8.相対性理論>量子論

アインシュタインにとって、数学は物理学ほど興味を持てる学問ではなかったようです。目にはみえないミクロの世界の量子は数学に頼ることが多く、「ゴリゴリの光量子信者ではありません」という自身の発言になったのだと思います。そして、アインシュタインは相対性理論を拡張するという仕事の方を優先しました。

 アインシュタインは、量子にも、光の二重性にも、容易にはなじめないと思うようになった。彼はヘンドリク・ローレンツへの手紙にこう書いた。「はじめにお断りしておきたいのですが、わたしはあなたが思っていらっしゃるような、ゴリゴリの光量子信者ではありません」。自分がそう誤解されてしまうのは、「論文にあいまいな書き方をしてしまったためです」と彼は言った。まもなくアインシュタインは、「量子は本当に存在するのか」を問題にすることさえやめてしまった。1911年11月に、「放射理論と量子」というテーマで開かれた第一回ソルヴェイ会議から戻ったアインシュタインは、もうたくさんだとばかり、量子の狂気を頭の片隅に追いやった。それから四年間、ボーアが原子の量子論をひっさげて舞台中央に登場しつつあるちょうどそのころ、アインシュタインは重力を取り込むために相対性理論を拡張するという仕事に専念するという仕事に専念すべく、量子のことは事実上棚上げにする。

株と債券

株を始めたのは入社5年目です。

きっかけは、営業管理部門から営業に移り、そこのH課長さんに「お金はわずかで良いので、勉強になるから株をやってみたらどうだ」というアドバイスを頂いたことです。確かに営業として顧客を理解する一つの手段になるのは間違いないと思い、自分自身納得して始めました。

その後、かなり長く休眠していた時もあったのですが、40歳を過ぎて「本気でやってみっか!?」という思いが何となく浮かびました。当時、オフィスがあった西新宿のお昼どきだったと思います。

マネックス証券の松本社長の著書だったか、ネットでみた記事だったかは定かではないのですが、「株をやるなら、就職したくなるような会社の株を買ったらいい」という話が頭にありました。また、営業マンだったためか「理解できる会社・業界がいいのではないか」という考えもありました。

そこで、日本HPというITの会社に勤務していたこともあり、ターゲットを外資系ITに限定し、2、3の銘柄にしぼって長期運用することにしました。株式に費やす時間は週1時間程度、「売らなければ損はしない(株が暴落しても慌てない)」、「会社経営のリーダーシップと会社方針が1番大事」という2点を最重要項目として肝に銘じ、挑戦をスタートさせました。

20年後、売買はほとんど直感頼みでしたが、幸い大きな成果を得ることができました。

そして今年、65歳になり「どうせやるなら、少しは投資家っぽくなりたいもんだ。直感頼みではなく、情報とプランに基づいて運用できるようになってみたいもんだ」との思いから、そのための準備を始め、自分なりに熟慮を重ねた結果「ひとまず、次のような方針でやってみよう」ということにしました。

1.分散投資

a)株式

 ●米国株…80%以上(テクノロジー関連限定)

 ●日本株…20%未満(3銘柄以下に絞る)

b)株式以外

 ●S&P500ETF

 ●米国債券ETF

 ●米国短期国債

2.運用

 ●長期運用

 ●リバース運用

 ●休むことも運用

3.情報源

 ●経済指標カレンダー(マネックス証券)

 ●マネクリ(マネックス証券)

 Yahoo Finance

 ●“ばっちゃまの米国株(以下のサイトは“ばっちゃま”さんに教えて頂きました)

  ●VIX(Volatility Index:恐怖指数)

  ●Fear & Greed Index 

  ●AAII Investor Sentiment Survey

  ●Put/Call Ratio(MacroMicro)

  ●finviz(MapsだけでなくNewsなど、他のコンテンツも大変充実しています)

  ●Motley Fool(“Earnings Transcripts”[決算報告]も掲載されています)

  ●CME FedWach(金利予想です。左メニュー上段、”Probabilities"をクリックして下さい)

  【永久保存版】米国株投資家の俺が広瀬隆雄氏から学んだ最強の投資法とプロの投資マインド 

4.時間

 ●基本、1日1時間以内。

☆ウォーレン・バフェットの言葉

『私はただ、明らかに他のものよりも優れていて、私が理解できるものを見るだけだ。』

強気相場は悲観の中に生まれ、懐疑の中に育ち、楽観の中で成熟し、幸福感の中で消えていく。

※以下のグラフは、DAILY FXの”Market Cycles | Phases, Stages, and Common Characteristics”から拝借しました。


長い前置きでしたが、今回のメインテーマは米国債券を理解することです。勉強させて頂いたのは、『証券会社がひた隠す 米国債券投資法』です。

著者:杉山暢達

発行:2018年1月

出版:KKベストセラーズ

目次は第3章のみ全て記述、第3章以外は大項目と中項目のみで小項目は記述していません。

ブログに取り上げたのは、黒字の個所になります。

まえがき

第1章 儲け話は山ほどあるけどリスクも山盛り

●「株価の上下は神のみぞ知る」が常識

●ノーベル賞受賞者がファンドをやったら

●運用のプロたちは本当に勝ち続けているのか?

●儲け話は「勝っても地獄、負けても地獄」そのワケとは?

●古今東西いつの時代もはびこる儲け話

●なぜ日本人は金融リテラシーが低いのか?

●年金のインフレーション・デフレーション

●かつて日本円は360円だった。為替とは「変動するもの」

●日本が「AAA」から「A」に格下げされたことの意味

●円安のカウントダウンが始まった。

第2章 なぜ日本人はタンス預金が好きなのか?

●これほど「元本」にこだわるのは、日本人だけ

●複数の銀行に預けても、「日本円」ではリスク分散にならない

●「投資信託」は運良く儲かっても手数料負け

●証券マンは胃が10個あっても足りない

●カモネギ日本人の、間違いだらけの投資法

●イソップ物語が教える運用法。最後に勝つのはアリやカメ

第3章 お金が勝手に増えていく米国債投資の仕組み

●そもそも債券って何?

・債券とは「貸金」

・ゼロクーポン債の仕組み

・日本の国債をお勧めできない理由

●元本がきちんと返ってくるのは債券だけ

・まずは元本を守るということ

・ゼロクーポン債の「収益性」

・「流動性」が資産のバランスを整える

●雪だるま式に増える複利の魅力

・お金が増える「複利」の法則

・米国ゼロクーポン債と為替リスク

第4章 ノーリスク、ストレスフリーの米国債の秘密

●米国債は1年に1度思い出すだけでいい

●米国債なら元本割れリスクはほぼゼロ

●維持費ゼロ!これが他の投資にはない米国債の強み

●どれくらいの金額で、どのように買えばいいのか

●つみたてNISAと米国債で将来不安が激減

●米国債は、農耕民族の日本人にフィットする

●40歳超でも旨味がある米国債投資法

第5章 デメリットは米国が破産したときだけ

●米国債投資に向かない人とは?

●途中解約は元本割れの可能性あり

●為替リスクは、1ドル50円を超える円高だけ

●米国債投資が向かない人

●円安が進むほど米国債投資のメリットは高まる

●米国以外の国債はどうなのか?

第6章 生命保険をやめて米国債を買う

●あなたは毎年、保険料をいくら払っていますか?

●保険商品は「定期」だけでいい?

●他の制度とうまく組み合わせること

●保険の担当者に米国債の話をしてみよう

第7章 老後の資金が毎月10万円入ってくる

●もしも65歳から年金プラス10万円がもらえたら

●米国債投資に必要なのは「口座」「キャッシュ」「スマホ」だけ

●手続きは他の金融商品のなかで、最も簡単

●古都の老舗の旦那衆も米国債は御用達

●20代からの「ズボラ年金」の始め方

●個人型確定拠出年金「iDeCo(イデコ)」と米国債

教えて!米国債 Q&A

あとがき

第1章 儲け話は山ほどあるけどリスクも山盛り

古今東西いつの時代もはびこる儲け話

・「空売り」とは投資対象(例えば“株”)を所有することなく、売り契約を結ぶこと。

※ご参考:“株の空売りの仕組みとは|シンプルな図解で分かりやすく解説

※ご参考:“株の「空売り」とは?仕組みやメリット、やり方をわかりやすく解説!

・「レバレッジ」とは株やFX、不動産投資などでよく使われる。定義は「他人の資本を活用して、自己資本に対する利益を高めること」となる。一言でいえば、「借金して投資する」ということ。「空売り」同様、リスクの高い金融商品である。

なぜ日本人は金融リテラシーが低いのか?

・海外では学校で、基礎教育として金融について学んでいるが日本では行われていない。そのため、何も勉強せずに株や投信に手を出すことは危険である。

かつて日本円は360円だった。為替とは「変動するもの」

・FXとはForeign Exchangeの略で、「外国為替証拠金取引」のことである。「日本円⇒米ドル」など通貨を買ったり売ったりしたときに発生する利益に狙う取引である。為替の上下で損得が決まるので、とてもギャンブル性が高い。

日本が「AAA」から「A」に格下げされたことの意味

・日本の格付けは高いもののトップグループではない。この理由の一つは国の借金で、2023年末には1,068兆円になると予想されている。

※ご参考:“【基礎解説】格付けとは?格付け会社や国債の格付けを紹介!

※ご参考:“日本国債の格下げ、日銀の政策転換が契機に

※ご参考:“1~2年は日本格付け変わらない、日銀正常化波乱ならリスク

※ご参考:“労働生産性の国際比較

画像出展:「ファクトから考える中小製造業の生きる道

1997年

日本:13位(34.9)

米国:11位(35.8)

画像出展:「ファクトから考える中小製造業の生きる道

2019年(22年後)

日本:20位(44.6)

米国:7位(77.0)

1997年から2019年の生産性の伸びは、日本は27.8%米国は215.0%で、米国は日本より7.7倍労働生産性が改善されました。

円安のカウントダウンが始まった

・一般的には国力の低下はその国の通貨の価値を下げる。日本は超高齢化少子化人口減少が懸念され、これらは国力低下の要因に波及するので、中長期的には円安に向かう可能性がある。

※ご参考:“アメリカ合衆国の人口ピラミッド(1950-2100) / 単位(Unit): 千人 / 2019年推計”(Youtube)

※ご参考:“日本の人口ピラミッド(1950-2100) / 単位(Unit): 千人 / 2019年推計”(Youtube)

第3章 お金が勝手に増えていく米国債投資の仕組み

そもそも債券って何?

・債券とは「貸金」

-株式は企業への「出資」になるが、債券は「貸金」になる。つまり、債券は借用証書に相当する。

-株式(出資)は、企業価値が高まるとキャピタルゲイン(株価の上昇)やインカムゲイン(配当金)が期待できる反面、株価が下がる場合もあり、上がるか下がるかは企業の業績次第である。

債券(貸金)の場合は、期間を定めて返済されるが貸金なので利子がつく。多くの債券は購入時に利子が確定しているので、満期まで保有していればいくらになって戻ってくるか明確である。従って、安全性が高い金融商品といえる。

-債券も株式同様、自由に売却ができる。ただし、その場合は流通価格で売却することになる。

ゼロクーポン債の仕組み

-「クーポン」とは債券に付随する利金ことである。「ゼロクーポン(ゼロクーポン債)」とは、利金がつかない債券を意味する。この「ゼロクーポン」は、利金はつかないが、購入時に額面金額より安く買えるという特徴がある。そのため、「ゼロクーポン」は「割引債」と呼ばれることもある。償還日には額面金額で支払われるため、その償還差益が利金の代わりとなる。

利金がつくやタイプの債券は、一般的に「利付債」と呼ばれている。「利付債」の魅力は利金がつくため、定期的な収入が得られることである。

-例えば30年物の米国ゼロクーポン債に100万円投資すると、30年後には概算で2.2倍の220万になって返ってくるイメージである(税金及び為替変動は考慮せず)。元本を減らすことなく債券特有の安全性を維持し、これだけのリターンを得られる金融商品は他に見つけることはできない。

日本の国債をお勧めできない理由

-米国より低い格付けにもかかわらず、利回りも悪いからである。ただし、為替変動のリスクはない。ただし、為替変動のメリットもない。

元本がきちんと返ってくるのは債券だけ

・まずは元本を守るということ

-債券は満期日の償還額(額面金額)が決まっているので、額面金額を受け取れる。ただし、理論的には発行元の倒産や破綻によって元本の返済や利払いができなくなることがある。そのため、高い格付けの債券を選択すべきである。

ゼロクーポン債の「収益性」

債券は途中で売却することもできる。その場合、売却価格は流通価格となる。価格が上がっていれば、途中売却による収益(キャピタルゲイン)を得ることができる。

・「流動性」が資産のバランスを整える

-米国債は世界中で売買されているので、流動性が高く売買しやすいという利点もある。

雪だるま式に増える複利の魅力

・お金が増える「複利」の法則

-単利とは元本だけに利息がつくもの。元本が100万円で単利が10%の場合、1年後は110万円、2年後は120万円と毎年元本(100万円)の10%(10万円)が加算されていく。

-複利とは元本と利息を含めた金額に利息がつくもの。元本が100万で複利が10%の場合、1年後は110万円、2年後は121万円、3年後は133万円と少しずつ増える金額が多くなっていく。

-元本1,000万円、年利10%を単利と複利について、10年後の金額で比較すると、単利は2,000万円、複利は約2,590万円になる。

米国ゼロクーポン債と為替リスク

米国債では為替変動によって日本円の価値は上下する。もし、円高によりドルの価値が下がっている場合でも、そのままドルで持ち続けることができるなら、円安になるまで待って円に換えれば為替による損失を避けることは可能である。

※ご参考:“MUFG 外国為替相場チャート表"  表示期間を“5年”にして頂くと2020年がやや円高ですが、これはコロナの影響(日本での感染の確認は2020年1月15日)が米国の方が深刻だったからではないかと思います。また、短期的にはゼロ金利の見直しにより円高傾向になると考えられますが、長期的には円高局面が長く進行することはないのではないでしょうか。

第4章 ノーリスク、ストレスフリーの米国債の秘密

米国債は1年に1度思い出すだけでいい

・米国債は「貸金」なので株や投資信託、FXのように投資対象の変化や売買のタイミングで悩んだりすることもない。基本的に「ほったらかし」で運用できる。

・米国ゼロクーポン債を売却せず償還日まで保有するのであれば、購入時に手数料相当分を支払った形になり、その後、手数料はかからない。

・株の「売買手数料」や投資信託の「販売手数料」や「信託報酬」は、米国ゼロクーポン債にはないので有利である。

米国債なら元本割れリスクはほぼゼロ

・米国債は購入時に利回りが確定する。つまり、いくらの利益($)が出るかが明らかになる。

・『たとえば、米国ゼロクーポン債を野村證券の窓口で購入する場合を考えてみましょう。28年4カ月物米国ゼロクーポン債は、購入単価が「45.52%」となっています(2017年10月時点)。つまり額面金額10,000ドルにしたい場合、4,552ドルで購入できるということです。これが割引債と呼ばれる所以です。額面金額、要するに28年4カ月後にもらえる金額は10,000ドルですが、購入時は「10,000ドル×0.4552[45.52%]=4,552ドル」で買えてしまう。それだけ事前に割引されて(利金分が差し引かれて)、販売しているということです。

ちなみに、この場合の利回りを計算すると、「2.790%」となります。安全に運用できて、かつドルベースで3%近くの利回りが購入時に確定しています。

理論上為替リスクはあるものの、これだけ分かりやすく、しかも安心して購入できる金融商品は、他にありません。』

・万一、米国が破綻する時は地球規模で危機に直面している可能性が高いのではないか。

・米国債の利回りは、米国債は絶えず市場で取引されており、その利回りは常に変化している。

維持費ゼロ!これが他の投資にはない米国債の強み

・米国債の「口座管理料」は証券会社によって異なる。有料の場合、無料の場合、金額によって口座管理料が無料になる場合があるので、事前に確認すべきである。

第5章 デメリットは米国が破産したときだけ

途中解約は元本割れの可能性あり

・途中解約は可能。ただし、その時の価格(市場価格)で売却することになるため、購入時の価格を下回る「元本割れ」になる場合もある。従って、安定を最優先にするのであれば途中解約しないことである。

米国以外の国債はどうなのか?

・米国同等以上の格付けを有している国はあるが、流動性や購入しやすさという点で考えると米国債の方が優れている。

・利付債は利金を得られる一方、複利の効果が得られにくい。貯蓄性を考えると複利効果が大きいゼロクーポン債の方が適している。

重要

「“欲ブタ”になってはいないか?」と自問する。

株をやっていて思うのはメンタルコントロールです。これはスポーツでいえばゴルフに似ているように思います。“ばっちゃまの米国株”さんのお話の中に、“欲ブタ”という言葉が時々出てきますが、英語では“Greedy Pig”となります。日本では「二兎を追う者は一兎をも得ず」に相当すると思います。また、「虻蜂取らず」ということわざもあるようです。


『市場サイクルとは、強気市場が最初から最後まで成熟し、その後、強気市場からの行き過ぎが修正される弱気市場に反転するプロセスです。市場の投機が始まって以来、これらのサイクルは同様の形で展開してきました。』

※”ばっちゃの売国株さん”がYouTubeで解説されています。

画像出展:「m3.com QOL君メルマガ株式会社リスクマネジメント・ラボラトリー

善し悪しは別にして、日本の株式投資は24年間でもあまり増えていないようです。

 

ご参考3:“投資家別の株式売買情報” 

画像出展:「西日本新聞

”個人”は約2割です。

余談

2023年7月20日から“株日記”をつけ始めました。毎日ではないのですが、発見したことや勉強になったことを書き留めています。あるいは持株が大きく下がった時などは、売るべきかか保有するべきかについて、自分なりに調べて分かったことや判断した理由を記録に残すようにしています。

10年後、「これは成功だった」と満足できる成果を上げることができたならば、“アマチュア投資家”の称号を自らに付与したいと密かに思っています。

リーナス・トーバルズ

GPU(Graphics Processing Unit)の開発・製造において、生成AIのリーディングカンパニーであるNvidiaによるArm買収断念の報道は2022年1月でした。現在、ソフトバンク配下のArm社は英国ケンブリッジに本社を置く、RISC(縮小命令セットコンピューター)チップの開発に特化した企業で、携帯電話やスマートフォンのほとんどの製品の中に入っています。

このArmの対抗馬として期待されているのがオープンソースのRISC-Ⅴです。このRISC-Ⅴ ISA(命令セットアーキテクチャー)を利用することにより自由にCPUを開発することができます。しかも、設計したCPUをオープンソースにする必要はなく、商用ライセンスのCPUコアを作ることができます。

※オープンソース:ソフトウェアを構成しているプログラム「ソースコード」を無償で一般公開すること。

NVIDIA’s secure RISC-V processor”(Youtube[英語])

『Security is key to many of NVIDIA’s markets. Example applications are protecting video and gaming IP, keeping private data on shared servers from leaking, and safety of self-driving cars. NVRISCV is at the core of NVIDIA’s security architecture. It is a RISC-V core with closely coupled co-processors that incorporate many security features to protect against a variety of attacks. Some features are architectural and we are proposing those as RISC-V specifications; others are implementation specific. We believe that RISC-V is ideally positioned to standardize around a set of security specs and best practices, helped by transparency and joint development by the community, inherent to its open source nature.』

以下は上記の英文をDeepLを使って翻訳した文章です。

『セキュリティは、エヌビディアの多くの市場にとって重要です。アプリケーションの例としては、ビデオやゲームIPの保護、共有サーバー上のプライベートデータの漏洩防止、自動運転車の安全性などがあります。NVRISCVは、NVIDIAのセキュリティ・アーキテクチャの中核です。これは、密接に結合したコプロセッサを持つRISC-Vコアで、さまざまな攻撃から保護するために多くのセキュリティ機能を組み込んでいます。いくつかの機能はアーキテクチャ上のものであり、私たちはそれらをRISC-V仕様として提案しています。私たちは、RISC-Vが、そのオープン・ソースという性質に固有の透明性とコミュニティによる共同開発によって、一連のセキュリティ仕様とベスト・プラクティスを標準化するのに理想的な位置にあると信じています。

日本HPで営業していたのは約12年前なのですが、オープンソースと言われればソフトウェアの話しという認識しかなかったため、CPUというハードウェアの世界にもオープンソースが入り込んでいるという事実に大変驚きました。

オープンソースと言われれば、私の場合Linuxです。IBM社がLinuxを核にサーバーの長期計画を発表したのは2001年でした。HP社はUNIX(HP-UX)が主力であったという経緯もあり、Linuxに対しては消極的でした。SEの評価はLinuxは軽く優れたOS(オペレーティングシステム)というものであり、製品品質に大きな懸念はなかったのですが、メーカーサポートという面で営業としてはなかなか難しい製品となっていました。

このような懐かしい昔話を思い出していて、ふと気になったのが、「今、Linux、特に開発者のリーナス・トーバルズはどうなっているのだろう?」という疑問です。

それがぼくには楽しかったから』、これがリーナス・トーバルズの本の題名です。なお、原題は『JUST FOR FUN』です。

著者:リーナス・トーバルズ

訳者:風見潤

初版発行:2001年5月

出版:(株)小学館プロダクション

画像出展:「Wikipedia

Linus Benedict Torvalds

『フィンランド、ヘルシンキ出身のアメリカ合衆国のプログラマ。Linuxカーネルを開発し、1991年に一般に公開した。その後も、公式のLinuxカーネルの最終的な調整役を務める。』

目次

謝辞

序章 人生の意味Ⅰ

第1部 オタクの人生

第1章 眼鏡と鼻と

第2章 初めてのプログラミング

第3章 フィンランドの冬に

第4章 トーバルズ家誕生秘話

第5章 高校時代

第6章 大学と軍隊

第7章 フィンランド再び

第2部 オペレーティング・システムの誕生

第1章 シンクレアQL来る

第2章 人生を変えた本

第3章 ユニックスを学ぶ

第4章 三台目のコンピュータ

第5章 プログラミングの美しさ

第6章 ターミナル・エミュレーション

第7章 誕生

第8章 アップロード

第9章 著作権の問題

第10章 ミニックス対リナックス

第11章 ウィンドウとネットワーク

第12章 恋人!

第3部 舞踏会の王

第1章 初めてのアメリカ

第2章 商標登録

第3章 就職

第4章 シリコンバレーにようこそ

第5章 リナックスの成功

第6章 不協和音

第7章 株式公開

第8章 コムデックス

第9章 リナックス革命は終わったか?

第10章 押しつけるな!

第11章 舞踏会

第12章 サポート

第13章 知的財産権

第14章 コントロール戦略の終焉

第15章 楽しみが待っている

第16章 なぜオープンソースこそ筋が通っているのか

第17章 名声と富

終章  人生の意味Ⅱ

ブログはリーナス・トーバルズがオープンソースに対し、どう思っているのかに注目しました。

第3部 舞踏会の王

第16章 なぜオープンソースこそ筋が通っているのか

●『IBMがパーソナル・コンピュータを開発したとき、何気なく、そのテクノロジーをオープンにしたので、誰でも複製を作れるようになったんだ。そのたった一つの行動は、PC革命に拍車をかけただけじゃなく、やがて情報革命、インターネット革命、ニュー・エコノミ―(なんと呼ぶにせよ、いま世界中で大きな変化を引きおこしているもの)を順に呼び寄せる結果となった。

これは、オープンソース精神から生み出される限りない利益というものを、もっともよく表している。IBM PCはオープンソースのモデルとして開発されたわけじゃないけど、オープンにされたことで、個人や企業が互換機を作り、改良し、売ることができるようになり、オープンソース・テクノロジーの好例となったんだ。

オープンソース・モデルの一番純粋な形では、誰でもプロジェクトの開発や市場性開発などに参加できる。リナックスは明らかにそのもっとも成功した例だ。ヘルシンキのぼくの散らかった寝室から始まり、成長して、有史以来最大の共同プロジェクトにまでなった。その始まりには、コンピュータのソースコードは自由に共有すべきだと信じるソフトウェア開発者に共通の理念があった。その裏付けとなったのが、この運動の強力な武器としての一般公有使用許諾書(GPL―旧来的な著作権に反対するもの)だった。リナックスは発展し、最高のテクノロジーを開発し続ける一つのモデルになった。そして、リナックスがウェブ・サーバー用OSとして次々と採用されていることや、株式公開での予想外の好評でもわかると思うけど、リナックスはさらに発展して、広く市場に受け入れられるようになったのだ。』

●『オープンソースという手法を人々が初めて耳にしたとき、それはばかげたものに聞こえたようだ。だから、オープンソースの長所が理解されるのに何年もかかった。

ぼくらは理念があって、オープンソースを売り込んだわけじゃない。オープンソースこそ最高のテクノロジーを開発し、改良する最良の方法だとわかってきたので、その理念が世間の注目を集めだしたのだ。

いまや、その理念は市場で評価を得つつあり、その評価のおかげでオープンソースがますます受け入れられるようになってきている。さまざまな付加価値サービスをおこなう会社が作られるようになり、それらの会社はテクノロジーを普及させる手段としてオープンソースを利用することができた。お金が転がりこむと、世間は信じるようになるもんだ。

オープンソースというジグゾーパズルの中で、一番理解されていないピースの一つは、どうしてこんなに大勢のプログラマーが、まったくの無報酬で働こうとするのかってことだろう。

順序として、その原動力について述べておこう。多少なりとも生存が保証された社会では、お金は最大の原動力にはならない。人は情熱に駆り立てられたとき、最高の仕事をするものだ。楽しんでいるときも同じだ。これは、ソフトウェア技術者だけじゃなく、劇作家、企業家にも当てはまる真実だ。オープンソース・モデルは、人々に情熱的な生活を送るチャンスを与える。楽しむチャンスも、さらに、たまたま同じ会社で机を並べている数人の仲間とではなく、世界で最も優秀なプログラマーたちと仕事をするチャンスも、オープンソースの開発者たちは、仲間からいい評価を得ようと懸命に努力する。こうしたことは大きな原動力になるに違いない。

●『オープンソース現象を理解する一つの方法がある―それは、何世紀も昔(現代の話しではないけれど)、科学が宗教界からどのように見られていたかを考えることだ。科学は、最初のうち、何か危険で、破壊的で、反対体制的なものと見なされた―ソフト会社は時々、オープンソースをそんなふうに見ている。科学は宗教体制を攻撃しようとして生まれたわけじゃなかった。それと同じように、オープンソースだってソフトウェア体制を破壊するために考えだされたわけじゃない。オープンソースは、最高のテクノロジーを生み出すために、そしてそのテクノロジーがどこに行くかを見守るために存在するんだ。』

●『オープンソースは理にかなっている。人々は、言動の自由について、屁理屈をこねたりはしない。自由こそ、人々が生命をかけて守ってきたものなのだから。自由はいつでも、生命をかけて守るべきものだ。しかし、はなっから自由を選択するのもまた簡単なことじゃない。オープンソースについても同じことがいえる。オープンにするかどうか、決定を下さなくてはならない。最初からオープンにするという立場に立ってみると危なっかしくてしようがないが、実際にやってみると、その立場はずっと安定したものになっている。』

画像出展:「レバテックキャリア」

Linuxとは?

Linuxの将来性は?

Linuxが利用されている分野

Linuxの特徴、メリット etc

画像出展:「Wikipedia」

Androidは、Googleが開発した汎用モバイルオペレーティングシステムである。Linuxカーネルやオープンソースソフトウェアがベースで、主にスマートフォンやタブレットなどのタッチスクリーンモバイルデバイス向けにデザインされている。』

※カーネル:OSの中核。基本機能を担う部分。

画像出展:「ZDNET」

今やLinux Foundationは、Linux以外にも1000以上のオープンソースプロジェクトを抱えている。しかし、昔からこうだったわけではない。2007年に設立された頃のLinux Foundationは、ほぼ完全にLinuxのためだけの団体だった。当時からずっとLinux Foundationのエグゼクティブディレクターを務めているJim Zemlin氏は、先日ウェブで公開されたDell Technologiesのデベロッパーコミュニティ担当マネージャーBarton George氏との対談の中で、同財団は創設に関わった人々の想像をはるかに超えて拡大してきたと語った。

高校サッカー研究4

今回も本田裕一郎監督の著書です。前回の『高校サッカー勝利学』は本のサイズはひと回り小さいものの、ページ数は257ページでほとんど文章です。本田監督のお考えを詳しく知りたい方向けと言えます。一方。こちらの『サッカー部 監督力とコーチ術』は127ページですが、写真や図解を使い具体的な練習方法の解説が出ているので、練習メニューを考えたい指導者の皆さんにはこちらの本の方が良いと思われます。

監修:本田裕一郎

発行:2015年11月

出版:メイツ出版

目次

はじめに

序章 

 ゼロからのスタートでも強くなれる!

 指導者の役割とレベルアップのポイント

勝にこだわり続ける指導者が自立心を持って勝利をつかむチームを作る

●指導者に必要な3つの資質とは

●チーム状況に応じた練習計画とレベルに応じた目標を設定する

●年間スケジュールに応じた練習内容を工夫する

●サッカーノートを書かせて日々の練習を振り返る

●高校生年代に重要なのは戦術を理解すること

●チーム戦術の中でいかにパフォーマンスを発揮するか

●海外では「18歳でプロ」は当たり前。世界基準を知ることも指導者の役割

●3年間の努力は今後の人生の糧となる

●「変わること」を恐れずに常にチャレンジする

●あふれる情報に囲まれて選択肢が多すぎる

●何事も諦めずに前に進む気持ちを忘れずに

HALF TIME1 世界基準を見据えて10代からプロになれる選手を育てる

Daily training

基礎体力と柔軟性を高めPK練習を繰り返して経験を積む

第1章 初級編 ベーシックな技術と戦術を身につける

Session1 シンプルなボールタッチですばやく攻撃

HALF TIME2 思いが強ければ行動が起きる。行動することでさらに目標に近づける

Session2 システムの基本を理解する

HALF TIME3 親御さんとも良好な関係を築くことがチームの和や結束を深める

Session3 ポゼッションとセットプレーの基本を理解する

HALF TIME4 あいさつ、掃除など基本的な生活習慣を身につける

Session4 ボールポゼッションとプレスの意識を高める

Column1 フィジカルトレーニング1

HALF TIME5 高校生年代は心身ともに成長のピーク

第2章 中級編 戦術を理解し柔軟な対応力をつけ

Session5 攻撃のスピードを上げる

HALF TIME6 「勝負に勝つ」ことを目的に具体的な目標を持ってステップアップ

Session6 スペースを広く使ってクロスボールを入れる

HALF TIME7 「やらせる」「見ている」「チェックする」が指導の三大ポイント

Session7 カウンター攻撃でシンプルにゴールを狙う

Session8 試合の状況に応じた攻撃のスピードを使い分ける

HALF TIME8 監督の役割とコーチの役割

Session9 オープン攻撃からクロスボールをすばやく入れる

HALF TIME9 日頃からプロになったつもりで高い意識で練習に取り組む

Session10 球際のプレーを強化する

Session11 試合前のコンディションチェック

HALF TIME10 まず何事も「まねる」ことから自分なりのアイデアが生まれる

HALF TIME11 練習の目的はイメージで伝え考えさせることで自立心を養う

第3章 上級編 試合を想定して実戦感覚を磨く

Session12 ひとつ先のプレーを読みセカンドボールを拾う

HALF TIME12 「戦うメンタリティ」は「一番」になることで培われる

Session13 試合前の課題を整理しプレーの精度を上げる

HALF TIME13 試合でも平常心を保ちリラックスする方法とは?

Session14 ボールを保持してプレスをかける

HALF TIME14 「運」は決して偶然ではなく自分でつかみ取るもの

Session15 あらゆる状況を想定して試合にのぞむ

HALF TIME15 負けた原因を考えることが次に勝つことにつながる

Column2 フィジカルトレーニング1

序章 

ゼロからのスタートでも強くなれる!指導者の役割とレベルアップのポイント

「勝ちたい」「強くなりたい」という情熱を持ち続けられる指導者とチームは必ず結果を出すことができる。

・レベルに合った練習計画に基づいてトレーニングすることが重要である。

勝にこだわり続ける指導者が自立心を持って勝利をつかむチームを作る

指導者に必要な3つの資質とは

・まず「真似る力」。色々な情報から、良いと思うことを真似してみることは大切である。

・次に「段取り力」。チームの実情とレベルを見極めた上で、現状に最も適した練習プランを考えることである。

・最後に「実行力」。プランを実際に行い、継続することである。まさに「継続は力なり」である。

チーム状況に応じた練習計画とレベルに応じた目標を設定する

年間計画を立てる上で重要なことは、選手のレベルや個性である。

・チーム全体の現状が把握できたら、今年の目標を少し高めに設定する。目標は具体的な方が良い。

選手個々にはチームの目標に沿った内容で目標を立てさせる。

・達成可能な小目標と同時に、大目標も設定する。

・例えば、ある選手が「レギュラーになる」という目標を掲げた場合、「どうしたらレギュラーになれるのか」「そのために必要なことはなにか」を具体的に考えさせることがとても大切である。そして、走力の課題として、「クーパー走でチーム全員が3300m以上走る」というような目標が生まれ、選手が納得してその目標に挑戦するようになる。

・この段取りをしっかり取らないと、その日暮らしの練習で終わってしまう。

目標には技術面、メンタル面、チームとして達成すべき点などいろいろな要素があるが、それぞれに対して指導者は具体化して設定し、それを選手個人に落とし込む(具体化する)ことを繰り返していく。

年間スケジュールに応じた練習内容を工夫する

・年間計画では、テクニックを磨く時期、体力をつける時期、戦術を覚える時期を設定し、いずれもレベルアップさせる。

・練習は次の試合を意識し、逆算して必要な練習を行うようにする。

・週の練習はあらかじめ決めておくのではなく、大体のアウトラインは決めるものの、前日の練習を踏まえて都度、必要な練習を加えたり、変更したりして臨機応変に対応する方が良い。

練習で重要なことは、必ず記録に残すということである。やりっ放しでは練習内容や練習計画を振り返ることはできない。記録が蓄積されることで資料としても活用できる。

サッカーノートを書かせて日々の練習を振り返る

サッカーノートをつける目的はチームとして、個人として目標を達成するために何をしたか、どんなことを考えたかなどを記録することである。重要なのは過ぎたことを反省するより、明日のことを考えさせることである。今日の出来事や勉強になったことなど、その日の自分の心の有り様を中心に記入させるようにしている。毎日、ノートに向き合うことで自分を客観的に見つめ直す習慣をつけることができる。

高校生年代に重要なのは戦術を理解すること

・高校生年代で最も重要なことは、持っている技術と選手の特長から、チーム戦術を作ることである。

チーム戦術の浸透には全体的なイメージを共有することが必要である。これは選手を「型にはめる」のではなく、例えば、「今この状況ではボールを高い位置で奪うのか、低い位置で奪うのか」などをゲームの中で瞬時に判断し、それを的確に実行できるようにすることである。

・戦術は、まず自分のチームの持ち味をいかすことだけを考える。また、主導権を握れない時の戦術を考えておくことも重要である。

チーム戦術の中でいかにパフォーマンスを発揮するか

・「今なぜそこでボールを持っていいのか、ダメなのか、ドリブルせずにパスを回すのか・・・」などを、繰り返し行うことでひとつひとつ覚えていく年代である。

海外では「18歳でプロ」は当たり前。世界基準を知ることも指導者の役割

・海外ではプロのチャレンジは「16~18歳」、それ以降は即戦力を期待される。

3年間の努力は今後の人生の糧となる

・目標に向かって努力することが大切であることも教える。「3年間、夢中になって、努力し学ぶ」という体験がとても大事である。

「変わること」を恐れずに常にチャレンジする

・失敗を恐れて行動しない人が多いが、何かを思い合った時には、まず行動してみることを勧める。

あふれる情報に囲まれて選択肢が多すぎる

・情報に振り回されない時間は現代社会においては非常に貴重である。意図的にこのような「何もすることがない」時間を作ることも必要だと思う。

何事も諦めずに前に進む気持ちを忘れずに

・中学生のリクルーティングは、他の指導者とは異なる独自性が求められる。 

第1章 初級編 ベーシックな技術と戦術を身につける

Session1 シンプルなボールタッチですばやく攻撃

・現代サッカーはプレスが厳しく、少ないタッチ数でパスを回すことが重要となる。これには正確にトラップする技術と正確にキック(パス)する技術、周りの状況を把握するスキルが必要になる。

・狭いスペースでのパス回し、トラップの位置やパスの方向などひとつ先を読む戦術眼も必要である。

サッカーは相手からボールを奪うゲームでもある。これには「どのようにボールを奪うか」という共通意識をもち、全員がそれぞれの役割を理解しプレーする必要がある。一人がパスコースを限定しつつボール奪取に動き、回りのプレーヤーはパスコースを消すためにパスを受けようとしている相手プレーヤーにプレッシャーをかける。これを続けることで、相手は追い詰められる。ここで、1対1で負けることがなければ、ボールを奪い取ることができる。

・タッチ数の課題は、トラップ、キックという基本技術の反復練習と、タッチ数を制限した練習を繰り返し行うことで上達する。

HALF TIME2 思いが強ければ行動が起きる。行動することでさらに目標に近づける

『サッカーで試合に出場できるのはたった11人。誰もがそのメンバーに入って試合に出たいという気持ちをもって日々練習の励んでいるはずです。しかし実際には、必ず試合に出られる人間と出られない人間が出てしまう。その差は本当に紙一重ですが、私はそれが「試合に出たい」という思いの強さの違いではないかと考えています。

「自分ほど練習している人間はいない」「絶対に試合に出る」という思い、あるいはその試合に出られなくても「次は絶対に這い上がる」という思い、そういった強い思いを持たずに、何となく毎日練習しているだけでは決して結果は出ません。きのうと同じ自分ではなく、きのうの自分は忘れて今日はきのうよりも良くなっている自分を目指す。そういう強い思いを持っていれば、必ずそれは行動に現われるものです。試合に出られなくて悔しい思いを「出たい」という強い思いに変えることで次の行動が生まれ、それがステップアップへとつながっていくのです。

思いが強い人間は、練習が終わってもピッチを離れてもずっとサッカーのことを考えているものです。それは選手だけでなく、指導者も同じです。どんな時でもサッカーのことを考え続けることでさらに思いが強くなり、その強い思いこそが行動を起こすのです。そして行動は明日からではなく、今日いまこの時から起こす。人間は自分から行動を起こさないと決して変わることはできないのです。

Session2 システムの基本を理解する

・高校生年代は、体力的にも精神的にも一番成長できる時期である。

・戦術練習は守備と攻撃に分け、目的を絞って行うことが望ましい。

・ヘディング練習はディフェンスを入れないで繰り返す練習をする。

・守備は全員で連動して動くことも必要なので、ポジショニングの練習も取り入れる。

・シュート練習は毎日必ず行う。ミニゲームや攻撃練習は、必ずシュートで終わることを徹底する。

Session3ポゼッションとセットプレーの基本を理解する

・ボールポゼッション、プレス、セットプレーは年間を通じて繰り返しトレーニングする必要があるが、マンネリ化しやすい。これを改善するには、本気でボール奪取することである。

・試合を想定した状況を作り、どんなプレーも実戦をイメージすることが重要である。

強い精神力は日頃から勝ちを常に意識することで得られる。

・セットプレーを習得するには時間がかかる。いくつかのパターンを練習し、試合展開や相手に応じて使い分けられるようになるのが理想である。

・セットプレーは正確に蹴れるキッカーと決定力のあるシューター、こぼれ球に反応する選手の動きである。特にキッカーは毎日根気よく練習する必要がある。

Session4 ボールポゼッションとプレスの意識を高める

・相手のボールを奪ってすばやく攻撃に転じることが求められており、ひとりひとりのボール奪取能力が不可欠である。ヘディングやボディコンタクトなどの練習に加え、ボール奪取のスキルアップを学ぶことも大切である。基本は「絶対に奪うという強い意志を持つことである。その意識が欠如していては、守備力は向上しないと考えた方が良い。

・ボール奪取はチームが連動して動く効果的なプレスが必要である。誰がボールに行き、誰がスペースを埋めるのかを戦術として理解させ、実戦を想定した練習を繰り返し行うべきである。プレスは相手を前後ではさむようにするのがコツである。

第2章 中級編 戦術を理解し柔軟な対応力をつける

Session5 攻撃のスピードを上げる

・状況に応じて戦術は臨機応変に組み立てる必要がある。したがって、やみくもに攻め急ぐべきではない。相手の位置やスペースの有無から状況判断し、速攻と遅攻の切り替えをしながら試合の主導権を握る。

・常にプレスをかけてボールを奪うことは基本である。

ボールを失った瞬間が一番ボールを取り返しやすいということを知っておくべきである。

・毎日の練習で「取られたら取り返す」という意識を徹底することで、勝者のメンタリティを育てていく。

HALF TIME6 「勝負に勝つ」ことを目的に具体的な目標を持ってステップアップ

『強い選手を育てるためには、メンタル、フィジカル、技術などさまざまな要素が必要です。スポーツは勝負であり、勝負に勝つことが目的であるからには、日頃のトレーニングでも常に味方に勝つことを考えることが必要であり、勝つことでしか進化はないと私は考えています。

もちろんどんな試合でも、必ず勝てるという保証はありません。しかし負けた場合でも絶対にそのまませず、「次はどうしたら勝てるか」を常に考える必要があります。指導者の役割とは勝ち続けることであり、「勝とう」とする情熱を常に持ち続けることです。負けた責任はすべて指導者にあり、決して選手のせいにしないことは言うまでもありません。

監督の役割とは、勝たせて自信をつけさせて育てることであり、それはとりも直さず最終的には社会で活躍できる人間を育てることでもあります。年代別にそれぞれ成長のしかたは異なりますが、スポーツに勝ち負けが伴うのはどの世代でも同じです。高校生年代では「なぜ勝ったのか」「なぜ負けたのか」の理由を考えさせることで、ステップアップするための新たな目標を持たせることができます。

大切なのは、いきなり高い目標を掲げるのではなく、具体的で達成しやすいものを徐々にクリアしていくことです。地区大会で勝つ→県大会で勝つ→県大会ベスト8・・・とひとつずつ目標を達成しながら、より高いステージを目指してレベルアップしていくことが必要なのです。』

Session6 スペースを広く使ってクロスボールを入れる

・実際に試合ではフリーは状態でシュートを打てることはほとんどない。重要なことはペナルティエリアの狭いスペースでもボールを失わない足元の技術である。ペナルティエリアの外からでシュートを狙える正確なキック力も武器になる。また、両サイドのスペースを有効に使って攻撃する戦術も重要である。

・オープン攻撃では、ボールを奪ったら外のスペースを意識してパスを回すことが基本である。クロスボールはトップスピードに乗った状態で正確に蹴る技術が求められる。これは繰り返し練習して身につける必要がある。また、クロスボールの何人走り込むのか、さまざまなケースを想定した練習が計画する。

Session7 カウンター攻撃でシンプルにゴールを狙う

・勝つために相手チームを研究・分析して、どのように戦ったらよいのかを考えるのが指導者の最大の役割である。

・カウンターはチーム全員でイメージを共有することが大切。

Session8 試合の状況に応じた攻撃のスピードを使い分ける

・数的不利な状況では、一般的にはボールキープして時間を作る。このためにはボールを失わないための技術の習得が必要になる。このような様々な状況に応じた技術を身につけるようにする。

・戦術練習はひとつひとつ、完全に理解するまで根気よく続けないと習熟は難しい。

HALF TIME8 監督の役割とコーチの役割

『全員が同じ方向性で練習に取り組むためには、具体的なチームモデルを設定して共通のイメージを持たせることが大切です。「バルセロナのようなパス回し」「ミランのような攻撃」など具体的なチームモデルを設定すると、選手も理解しやすいでしょう。目標が具体的になればなるほど、それを実現するためにどんな練習をして、どんな戦術を取りいれたらいいかのイメージが明確になります。

選手の人数が多くなると、ひとりの指導者だけではすべての選手に目が届きにくくなり、コーチとの分業が必要になります。基本的な方向性を共有しつつ、それぞれのやり方を尊重し、連携してチームづくりを進めていく必要があるでしょう。それぞれのコーチが自分の色を出しながら指導することでレベルアップし、成長するのをサポートするのも指導者の役割のひとつだと私は考えています。』

HALF TIME9 日頃からプロになったつもりで高い意識で練習に取り組む

『毎日の練習では、「きのうよりも今日はこれができた」という達成感が得られるような練習をさせることが大切です。「今日はこれができたから、じゃあ明日はこれをやってみよう」という練習を続けることでレベルアップしていくのです。』

Session10 球際のプレーを強化する

・ヘディングの競り合いでは、体を預けたり、タイミングをずらしたりするなど工夫することで身長差を克服することは可能である。

・スライディングは基本を理解し、強さと同時にファウルにならない方法を身につける。

Session11 試合前のコンディションチェック

・基本的に試合の前の週は戦術練習を重点的に行い、対戦相手の特徴をイメージしながら練習することを意識させる。

・ハードな練習はせず、守備や攻撃の約束事を再確認やセットプレーの練習をする。

・選手だけのミーティングも効果的である。実際の試合でどのようにプレーするかをなるべく自分たちで考えさせることで、自立心を養うことができる。

・選手選考は試合前日の体の切れ等を確認してメンバーを決める。

HALF TIME10 まず何事も「まねる」ことから自分なりのアイデアが生まれる

『指導者にも全く同じことが言えるでしょう。最初は何でもまねからのスタートでいいのです。チーム作りや指導法などを考える際に、まず身の回りにあふれている情報から「この目標を達成するためには何をしたらいいか」を取捨選択し、わからなければモデルとなるチームを見てまずはまねをしてみる。サッカーのチームだけでなく、いろいろなスポーツや競技を見て盗むことも大切です。それを続けていくうちに、しだいに自分なりのアイデアが生まれ、指導にもアレンジを加えていくことができるようになるのです。』

HALF TIME11 練習の目的はイメージで伝え考えさせることで自立心を養う

『指導の際に重要なのは、トレーニングの際に1から10まですべてを選手に指示いないことです。

「このプレーをするのはこういうイメージで」という指示の出し方をすると、具体的な結果を出すためにどうしたらいいか、いやでも必死で考える。これが非常に大切で、その結果生まれたアイデアを実現するために120%努力して工夫することがステップアップにつながるのです。

第3章 上級編 試合を想定して実戦感覚を磨く

Session12 ひとつ先のプレーを読みセカンドボールを拾う

・ひとつ先を読むとは、例えば、シュートの跳ね返りやヘディングのこぼれ球、どこでパスを受けられるか、どこにパスが出るかなどをいち早く予測することで相手より先に動き出すことである。

HALF TIME15 負けた原因を考えることが次に勝つことにつながる

『スポーツは勝負が目的であり、必ず勝ち負けが決まります。誰でも「勝ちたい」と思って試合に臨みますが、残念ながら負けることもままあります。指導者が負けたのです。

高校生年代に「負けてもいい」はないと私は常に考えています。そのためには日頃のトレーニングから勝ち負けを覚えさせて勝つメンタリティをつけることが大切になります。どんなチームでも負けていいゲームはありませんし、負け癖がついてしまうのは一番良くありません。

負けた特に、その「負け」をどのように受け止めるかはとても重要です。「負けたけど内容は良かった」では次の勝ちは生まれません。また選手を怒ったり、必要以上に慰めたりするのは良くありません。それよりも負けた原因をしっかり分析し、次に勝つ方法を考えることが大切なのです。なかなか勝てない相手に対して負けた原因を修正して次にのぞむことで、選手も指導者も少しずつレベルアップしていく。負けを簡単に受け入れる指導者がいるチームは決して強くなりません。どんな弱いチームでも、負けん気の強い指導者がいれば、必ず這い上がっていけるのです。

感想

私は大学まで「勝てば官軍、負ければ賊軍」勝負にこだわるサッカーの魅力を体感してきました。真剣勝負を前にチーム一丸となり、勝利を追い求める中で強い絆がつくられました。今では、その「時」を共有した友が人生を豊かにしてくれています。

サッカーを通してどれほど成長できたのかは分かりません。しかしながら、「何が1番良いのかを考え」、「やると決めたら絶対に逃げない」。そのような考えや経験が充実感を与え、自分自身の人生の糧になったのは間違いありません。

大瀧先生の考え抜く、これが基本のように思います。そのためには自分自身と向き合うこと、そして記録に残し、少しずつ積み上げていくこと。その姿勢と行動力が人を成長させ、同時にチームを強くするのではないかと思います。

高校サッカー研究3

今回と次回は、市原緑高校、習志野高校、流通経済大学付属柏高校で大きな成果を上げてこられた本田裕一郎監督です。私は監督でもコーチでもなく、後輩を応援するひとりのOBなのですが、本書はサッカーを指導する人にとっては、必読書と言えるぐらい貴重な教本ではないかと思います。

どうしたら「勝にこだわるメンタリティ」の根を張れるのか、その答えが「人間性を考えた指導なんだ」という境地に至るまでに長い時間がかかった。というお話は特に印象的でした。

著者:本田裕一郎

発行:2009年6月

出版:(株)カンゼン

目次

はじめに 勝利にこだわることで心を鍛える

第1章 とにかく“勝ち”にこだわる

●選手の自立こそ指導者に求められる使命

●「勝利」を経験した選手は必ず変わる!

●個性派集団に“勝ち”を教えるために

●シンプル・イズ・ベストへの開眼

●「孫子の兵法」に学ぶ

●ピッチの上で選手が自立した日

●人間性を考えた指導への転換

●合言葉は「百打一音」

●身近なところから「勝利」は始まる

●目標を明確にしなければ、夢は達成できない

●指導者に求められる「人間力」

●本当の意味での「強さ」とは?

Interview1 布 啓一郎 “習志野に負けた悔しさは今も忘れない”

第2章 すべては失敗から学んできた

●偶然だったサッカー指導者への道

●手探りでスタートした環境作り

●工夫を凝らした遠征行脚

●鉄拳制裁はスパルタではない!

●選手を追い込み続けた日々

●スパルタ指導の弊害

●優れた選手から得たもの

●若さゆえの大きな失敗

●才能を表舞台に送り出すための改革

●言葉でのコミュニケーションの重要性

●勝つための術を探して

●高校サッカーに必要な本当の厳しさとは?

Interview2 宮澤ミシェル “あの3年間が僕のすべてを作ってくれた”

第3章 自由が奪った“勝利への執念”

●名門校復活を任された難しさ

●井田監督流テクニックサッカーの追及

●市原緑のやり方を180度変える

●選手獲得方法の工夫

●海外で思い知った現実

●九州の台頭とJリーグ開幕

●ライバルの存在

●布啓一郎に見せつけられた「勝利への執念」

●「新サッカー王国・千葉」の誕生

●福田、広山から教わったこと

●95年高校総体優勝の意味

●玉田圭司への後悔

●勝にこだわらなかった自分

Interview3 広山望 “どんなときも「一人の大人」として見てくれた”

第4章 “自立心”を高めるチーム作り

●指導者人生の集大成への充電

●3度目のチャレンジ

●親代わりとして選手に接する寮生活

●点呼の時間やミーティングを有効に生かす

●スタッフ強化とチーム作りの工夫

●全国屈指の強豪への仲間入り

●常勝軍団を目指して

Interview4 齋藤重信 “いつか全国大会の決勝で戦う日まで”

第5章 日本サッカーに足りないもの

●自立心を失った子どもたち

●サッカーは点を取ることがすべて

●サッカー上達のカギはコミュニケーション

●クラブと高校サッカーが抱える問題点

●日本型育成システムを考える

●オシムが日本人に与えた“理不尽”

●日本サッカー変革の時

●世界で戦うために必要なチカラを

おわりに 今、鍛えなくていつ鍛える

第1章 とにかく“勝ち”にこだわる

選手の自立こそ指導者に求められる使命

・勝利を目指す上で必要なことの一つに、「自立心の育成」がある。これは、自ら決断でき、行動できる人間を意味している。サッカーはバレーボールのようなタイムアウトもなく、野球のように攻守が入れ替わる度にプレーが途切れることもないため、試合が始まったら選手一人ひとりの自己判断に委ねられる。しかも集団競技のため、全員がひとつの目標に向かって意思統一を図る必要がある。

・最近の風潮として過保護である傾向が強い。例えば体操服を忘れたといって、母親が学校に持ってくるというケースもある。過保護は自立心の欠如の大きな要因だと思う。

・高校教師になって30年以上経つが、自立心の欠如は年々深刻化している。自分の考えをしっかりと主張できないようでは、勝利を目指すことなどできない。選手のメンタリティは大きなテーマであり、自立心を養っていくことが指導者の大きな使命である。

「勝利」を経験した選手は必ず変わる!

・「負けん気と意地の不足」が顕著である。共稼ぎが増え、家庭内のしつけの時間が足りないことが大きく関係しているが、指導者にも責任はある。サッカーをすることの楽しさよりも、“戦いの楽しさ”を通して「負けないという気概」を浸透させる必要がある。勝利は「感動」と「自信」をもたらす。この喜びや楽しさが人を成長させる。そして目標を掲げ、それに向かって努力し目標を達成する。その過程を学ぶことが非常に重要である。

個性派集団に“勝ち”を教えるために

・最初にやったことは、選手たちの特徴と個性を見極め、勝利するために何をしたらいいのか考えることだった。

「日本一」を意識させるために、何度も説明し、サッカーノートや目標設定なども書かせた。特に1年生の夏まで初歩教育を続けた。

・入学当初のトレーニングは走ることがメイン。最初の15分間は3000メートル走だった。その後はゲームが中心。特に判断力の早さを要求した。ボールコントロールは2タッチ以下や1タッチなど制限を課していた。

・夏休みには1年生だけで10日間くらいの九州遠征を行った。このような厳しい経験を通じ、子どもは少しずつ自立していく。

シンプル・イズ・ベストへの開眼

・小柄な選手が多い特徴を生かすには、ボールも人も動くかサッカー、つまり、運動量を高め、接触を減らし、ボールタッチ数の少ないサッカー。ドリブルは控え、ここぞという時にドリブルで変化をつけるようなサッカー、オシムジャパンの目指すサッカーを参考にした。

「孫子の兵法」に学ぶ

・選手は勝たせれば勝たせるほど過酷な練習に耐えられるようになる。

・少ないタッチでボールを回すためには技術と判断の早さが求められる。そのため、狭いグリッドでの4対4や制限をつけたボール回しを取り入れていった。

他にはアイデアはないかと、さまざまな勝負事の本を読んだ。その中で特に興味をもったのが、「孫子の兵法」だった。

・自立の大切さを痛感したのは、高円宮杯全日本ユース選手権大会で、本田監督を欠いたジュビロ磐田ユース戦と青森山田戦に勝利したことだった。そしてサンフレチェ広島ユースとの決勝戦を前に、「孫子の兵法」から取り入れて行ったことは相手の徹底したスカウティングだった。これにより、平常心で試合に臨めた。事前の準備がいかに重要かを改めて痛感した。

まずチーム全員でスカウティングビデオを見た後、相手4-4-2ならその順番に大きな模造紙を壁に貼ります。そこに選手自身が自分で感じた相手の特徴を書き込んでいくのです。相手の左サイドバックなら、「左利きで速い」「すぐにファウルをする」「キレやすい」「集中力が足りない」などと、みんな競うように書きます。模造紙がいっぱいになるくらい特徴が出揃ったら、最後の赤いマジックで「何が何でも勝ってやる!」と闘争心を紙にぶつけるつもりで書いてもらっています。』

ピッチの上で選手が自立した日

監督として大切なことはトライする精神を持ち続けることである。その精神が人からのアドバイスを呼び込み、読んだ本からの気づきにつながる。

人間性を考えた指導への転換

人間性を考えた指導という境地に至るまでに長い時間がかかった。どうしたら「勝にこだわるメンタリティ」を植えつけられるのかとずいぶん悩んだ。具体策を模索し始めたのは、流経に来てしばらく経った頃だった。まずヒントを探してビジネス書を読みあさった。

・あるビジネス書をきっかけに、何がうまくいっていて、何がうまくいっていないのかを考えることがあった。指導者の資質か、指導者同士のコミュニケーションなのか、施設や環境なのか、練習メニューなのか。

・『「好きこそものの上手なれ」と言いますが、本当にサッカーが楽しくて仕方がない子は自分から進んで練習にも取り組む。勉強でも興味があればどんどん学習する。限界を軽々と超えていくんです。つまり、身近なところを分析して、問題を洗い出し、一つひとつ改善して、サッカーをもっともっと好きにさせればいい。そう思い直したのです。

早速、周辺の洗い出しから取りかかり、検証の過程でいくつもの新しい発見に出会いました。そんな中、再認識したのが、「生き方がきちんとしていない人、信念のない人は成功できない」ということ。これまで宮澤ミシェル(元・ジェフ市原)や名塚善寛(元・コンサドーレ札幌U-15監督)などプロを経験して現役を引退した選手がたくさんいましたが、彼らも「最終的にサッカーがダメになったときこそ、人間性にたどり着いた」と話していました。プロ選手を終えた後の人生はその人間性に大きく左右されます。好きなサッカーに一生携わるためには、仲間やチームに信頼されなければ、次の仕事は見つかりません。それゆえ、私は人間性を第一に考えた指導を心がけようと決意しました。』

合言葉は「百打一音」

・人間性を養う第一歩として考えたのが、チーム全体の意志統一を図ることだった。全員が同じ意識で練習や試合に取り組む雰囲気を作らなければならない。

身近なところから「勝利」は始まる

・挨拶が自然にできるようになることが、「自己表現」の入り口である。挨拶が定着して「先生、これをさせてください」と言ってくる選手が増えたことは驚きだった。そして、些細なことでも、自分自身できちんと連絡するようになった。これは大きな変化だった。やはり大事なことは身近なところからきちんとすること。「勝利へのこだわり」も日々の積み重ねから培われることを知った。

目標を明確にしなければ、夢は達成できない

・年間、月、1週間、毎日とそれぞれやるべきことを明確にしておけば、全力で向かうだけでいい。そこで「目標設定用紙」を導入した。これは陸上で連覇している関西の中学校の指導者の本を参考にして作った。

「目標設定用紙」に次の試合に向けてのそれぞれの目標を選手に書かせ、次の1週間はどう戦ったら勝てるのかを考えながら練習する。用紙には目標だけでなく、目標を達成するために何が必要か、具体的な練習方法や達成する期限も設ける。それを監督と選手間でシェアする。

・サッカーノートはなるべくポジティブに書くようアドバイスするが、それ以外は任せている。そして3年間が終わったとき、すべてのノートを綴じて「飛翔」というタイトルの表をつけて卒業するときに渡している。

指導者に求められる「人間力」

監督として、人としての含蓄がないと、最終的には選手たちを納得させられない。

・本田監督の探求心を深めたのは、昭和の陽明学者・東洋思想家の安岡正篤氏である。安岡氏は1945年8月15日の終戦の詔書(玉音放送)の草案を加筆し、戦後は実践的人物学や活きた人間学をもとに、多くの政治家や財界人の御意見番として活躍した人物である。安岡氏の存在を知ったのは、「日本人とは何か?」を知るために、さまざまな文献を当たっていたときに知った。この時、先人から学ぶことの重要性を痛感させられた。

本当の意味での「強さ」とは?

・全国9回優勝の古沼先生、選手権6回優勝の小峰先生、4回優勝の布先生に共通することは、自分のサッカー哲学に揺るぎない信念と大きな目標に向かって、諦めずにやり続ける強さである。

・北陽高校の監督だった野々村征武先生の規律と、静岡学園の井田勝通先生のテクニックと創造性を融合させることを考えてやってきた。

第2章 すべては失敗から学んできた

若さゆえの大きな失敗

・指導者には指導なりの哲学が必要であり、徹底した戦術をチームに浸透させることが重要である。

高校サッカーに必要な本当の厳しさとは?

・『新設校で、先輩指導者もおらず、上からのプレッシャーもなかったため、自由に動くことができたということもあります。それゆえ、ひたすら強引に選手を引っ張っていました。トライ&エラーも許されていたので、いいと思ったことはすぐやりました。スパルタ方式を導入したのも、全国遠征も、朝鮮語の学習もそう。「不易流行」という言葉がありますが、どんどんチャレンジして、いいものは残し、変化すべきものは変化させたらいいのです。そのうえで、私は「継続」という言葉を大切にしてきました。考えついたことが間違っているかもしれないと感じても、最低3ヵ月はやる。そのくらいの辛抱が大切だということも学びました。こうした結果、チームを千葉県でベスト4の常連まで引き上げることは小さな自信につながったと思います。

反面、言い尽くせないほどの失敗がありました。

最も悔やまれるのは、前にも述べましたが、才能を持つ選手たちに「勝利」を味わせてやれなかったことです。

市原緑には、柴崎のようなユース代表候補にまでなった選手もいましたし、佐々木やミシェルのような日本代表に上り詰めるタレントもいました。石井や古川も鹿島アントラーズの初期の成功を支えた選手たちです。大きく見て、3回は全国大会で上位に入れるくらいのポテンシャルを持ったチームであった。それなのに、私は彼らを千葉県の外に出すことができませんでした。もう少し真剣に勝つ方法を考えていたらと思うと、悔やんでも悔やみきれない。やはり「勝利への執念」が不足していたに違いありません。

第3章 自由が奪った“勝利への執念”

名門校復活を任された難しさ

・戦う集団というのは、作り上げるのには時間がかかるが、崩れるのはあっという間である。

「新サッカー王国・千葉」の誕生

・自分のチームのことだけでなく、高校サッカー界全体がよくなるように何かしようと思っていた。市原緑時代に手掛けた外国選手の国体出場、朝鮮高校の全国選手権出場、国体のU16化、関東スーパーリーグやプリンスリーグの発足などである。これは千葉の指導者たちが柔軟性が高く好意的だったことも関係していると思う。

勝にこだわらなかった自分

・「勝利」という目標があれば、どう勝つかを模索し、いろいろなアイデアが出てくる。しかし「うまければそれでいい」という考えでは、それ以上のところまで到達することはできない。

・サッカーは個人スポーツではないというところに、指導の難しさがある。チームの全員にストロングポイントとウィークポイントとがあって、そういう個性に対応していくには時間がかかる。子どもたちとなるべく多くのときを一緒に共有して、メンタルやフィジカルなどさまざまな面を鍛えていかなければならない。

Interview3 広山望 “どんなときも「一人の大人」として見てくれた”

『一番強く残っている本田先生のエピソードは、卒業するときに「この本を読んどけよ」といって、落合信彦さんの著書「日本の常識を捨てろ!」をもらったことです。本の内容はあまり覚えていないのですが、ちょうど社会に出るタイミングに、国際社会の現実が赤裸々に書かれたものを読んだことで、「自分はもう学生じゃない。今までと一緒じゃダメ。自分からアンテナを広げて、いろんなことを吸収していかないといけないんだ」と感じられました。本田先生は無言のうちに、そういうことを僕に教えようとしてくれたのかもしれない。社会人になるためのいい区切りなったと思います。

僕の場合、習志野で「人間としてのベース」が作られました。プロになってから厳しい戦いを乗り越えていく気持ちの準備とか、人間としての器がある程度、できたんじゃないかな。ジェフでは1年目から試合に出るようになり、確かに生活環境が激変しました。当時のジェフには、マスロバルやハシェック、ルーファーのようなすごい選手がたくさんいた。彼らはプレーだけでなく、人としても素晴らしかったんです。彼らと話すことで、世界のサッカーや政治、経済に目を向けることもできました。同時に「ボーっとしていたら取り残される」という危機感も持てた。そんな自分の土台を固めることができたのは、間違いなく高校時代でした。』

第4章 “自立心”を高めるチーム作り

指導者人生の集大成への充電

・自らの判断で私学を選択した。その際、「これまでにやったことのないことをやって、自分の器を広げよう」と考え、「企業研修プログラム」に参加した。内容は多岐にわたったが、企業で働く若手や新人、女性社員など、これまでに会ったことのない人々と1週間机を並べて学ぶ機会は実に新鮮で、社会全体を見つめ直すいい機会になった。続いて、徳川家康が教育を受けたとして知られる臨済寺に行った。これは神社仏閣からメンタル面の教育につながる何かを得たかったからである。この後は、他のスポーツ強豪校、バスケットボールの能代工業、野球の横浜高校などをアポなしで見に行った。共通していたのは、練習が厳しく、選手たちの動きが素早いことだった。また、監督がいてもいなくても、選手たちの取り組みが積極的だった。

3度目のチャレンジ

・習志野から流経がある柏に通うことは難しいため、自分自身と習志野から来る7人の生徒のために、5LDKの格安マンションを、退職金をつぎ込んで購入した。食事はもちろん弁当も本田先生が作った。もともと日曜大工が趣味だったこともあり、マンションの庭に手作りベンチを置いた。

・『朝食の準備をした後、学校へ行き、朝練習や授業を終え、今度は午後の練習。それが終わると、選手を連れてスーパーへ買出しに行き、また料理を作るという流れです。』

・グラウンドが決まるまでの間、自家用のマイクロバスを使って、日替わりであちこちのグラウンドに行って練習していた。当時は関東大学リーグ1部だった大学との連携もあまりなかったため、大学のグラウンドも使えなかった。

親代わりとして選手に接する寮生活

・権利と義務で成り立つ教育が、権利偏重となり「愛情=可愛がり」になってきた感がある。子どもたちの親への依存心が強く甘えが出やすく、子どもたちは小さくまとまっていることが多い。自己主張の機会が少ないためか、キバが抜かれた状態のように感じる。しつけや教育が重要である。

サッカーを通して、他人を思いやれるような人間、社会で通用するような強いメンタリティを養いたいと思った。

点呼の時間やミーティングを有効に生かす

・自己主張のできる人間になってほしいと、「3分間スピーチ」「3分間作文」を取り入れこともあった。これは、習志野時代のアルゼンチン遠征で、アルゼンチンの選手のスピーチがとてもしっかりしていたのが印象的だったため。「3分間作文」はテーマを伝えて最初の1分間で考えさせ、その後の3分で書かせる。

・月曜はオフだが、全員(A、B、Cチーム)集めてミーティングをやっている。プリントを配布して考えさせることもある。特に「3年間は本当にあっという間だ」ということも強調している。

・コミュニケーションを重視して、選手たちの上下関係をなくしている。

スタッフ強化とチーム作りの工夫

・分業制にしてスタッフを束ねる難しさを実感した。特に人を動かすことの難しさや大変さに直面している。いかに彼らを育てていくか大きな命題である。

・A、B、Cチームの決め方は色々だが、最初は生徒に決めさせている。新チーム発足から1ヶ月半くらい経過したらスタッフが入っていき、各選手の状態等を考慮して選手を入れ替える。上げる子も下げる子もコーチが推薦する形にしている。落とす場合は落とす理由を明確に説明する。また、3月になるとプリンスリーグが始まるので、その段階になると、選手の入れ替えは完全にコーチングスタッフが主導権を握り、チーム編成を行うようにしている。

全国屈指の強豪への仲間入り

・2002年日韓ワールドカップの全ゴールの約7割が、ボールを奪ってから10秒以内だったという話がサッカー界で明らかになり、守から攻への切り替えの重要さをあらためて認識した。また、これには布監督の市立船橋高校のサッカーを見ても明らかだった。

・楽しい雰囲気だった習志野高校時代とは異なり、ピーンと張り詰めた空気をつくりたい、生徒を納得させるような指導法を模索した。

常勝軍団を目指して

・興味が続かないというのが性格的な欠点であり、「勝利への執念」も十分とは言えない。このことから「徹しられないのなら辞めろ!」を掲げ、自分を追い込むようにしている。

・常勝軍団に求められているのは、後継者の育成である。優れた指導者はサッカー一辺倒ではなく、読書をし、教養を身に着け、話術も求められる。また、いろいろな引き出しを持っていなければならない。このような努力もしていく必要がある。

日本人はシュートがうまくない。これはシュートの練習が少ないからである。海外ではシュート練習が明らかに多い。また、シュート技術は中学生、小学生の時に行うことが望ましい。

第5章 日本サッカーに足りないもの

自立心を失った子どもたち

勝負にこだわり強い心を育むために自立心が不可欠である。一方、子どもたちの自立心は年々失われていっているのではないかと思う。何か起こったときに柔軟な対応ができない選手が多い。また、自分で考えての判断や工夫を凝らしたアイデアも出てこない。応用力や融通がきかないことを強く感じる。何か言われないとやらないという風潮も強い。

・共稼ぎが増え、家庭内の会話が減り、子どもたちはゲームやスマホに夢中で増々会話は減る、挨拶もしないなども当たり前になる。さらに悪いことに親は子どもに十分に接しないマイナス面を、お金やモノで解決し子どものしつけを学校に託す。何でも与えすぎるのは良くないとわかっているのにあげてしまう。こうしたことが子どもから自立心を奪っている。

限度をわきまえないスパルタ教育は「指示待ち人間」作ってしまう。細かいことを言いすぎると自立心は育たない。

・自立心の欠如を感じるようになったのは進路だった。当初は誰も来なった。徐々に生徒たちが「サッカーのできるとこないですか?」と聞きに来るようになった。さらに、変わってきたのは、親御さんが来て「ウチの息子にサッカーのできるところを見つけてもらえませんか?」と聞くようになった。

サッカーの練習と同じくらい、常識や習慣、生き方の話しを積極的に行い、自立心を育てる努力もしている。その結果、少しずつ自分の進路や自分の考えを明確に話せる子が出てきた。

・親には返謝しろよと常々話している。「感謝は返謝で完成する」、それを実践してほしい。

サッカーは点を取ることがすべて

・ギニアからムサは、片言の日本語で「自分は40試合やって37ゴール決めた」と、いつもゴール数のことをアピールする。一方、日本の子どもたちからは、「ハードワーク」だとか、「オフ・ザ・ボールの動き」と言う。ピッチ上でもボールコントロールやリフティングの練習をするが、ムサはシュートが第一。それはアフリカだけでなく、イタリアもそうである。かれらはシュートに対する意識が日本人の子どもよりはるかに強い。

・日本の指導現場は「個性を伸ばす」よりも「サッカーのノウハウを磨く」ことに重点が置かれすぎている。

流経では2時間の全体練習の3分の1をシュート練習に割いている。敵をつけないシュート練習は行わない。ゴールを使わずに行うメニューはほとんどない。朝練もゲーム中心。ピッチの4分の1、8分の1、16分の1を使ったミニゲームなどで得点感覚を磨いている。

・『ボールをもらう前にゴールとゴールキーパーの位置を確認し、ペナルティーエリアの中に入ってボールを受けた時点では周囲の状況が頭に入っている。その状態で、しっかりとボールを見ながら打つのが基本なのに、それができていない。ボールを見る時間を延ばすことが課題です。

・ワンタッチのサッカーは非常に難しい。ボールをもらう前の確実な状況判断、ボールを受けるタイミング、体の向き、技術、視野の確保、パススピードや強さなどあらゆる要素を完璧に備えていないとできない。だからこそワンタッチコントロールの練習を育成年代から数多く取り入れる必要がある。

サッカー上達のカギはコミュニケーション

チームプレイであるサッカーにおいて「コミュニケーション能力の不足」は致命的なマイナス点である。

・子どもたちが年齢を問わずいろいろな人と触れ合えるような環境づくりも重要である。

・子どもの人権を尊重するという欧米の考え方も参考になる。アルゼンチンでは大人も子どもも年齢に関係なく正面から向き合って話す。

・マラドーナを育てたというおじいさんコーチは、「評価を子どもたちの前で言ってはいけない。試合や練習での選手個々の評価はコーチの頭の中だけにあればいい」という話をしていた。

・日本ではチーム全員を一律にレベルアップさせようと、コーチがみんなの前で特定の選手に対し、「ここがダメ」「あそこがダメ」としばしば言ってしまいがちであるが、ほとんどの場合、本人は気づいているので、批判に対して言い訳をしたり、責任をなすりあいにつながるので、なるべく控えた方が良い。細かい評価は指導者の頭の中に置いて置き、練習はさらりと終わる。これが意外と重要である。

日本人は、すぐに相手を子ども扱いしたり、「お前は黙っていなさい」と言ってしまったりすることが多い。外国人の指導者は子どもに対してもリスペクトする気持ちを持っている。彼らに話させたり、しっかり聞いてあげたりすることを大切にしている。

クラブと高校サッカーが抱える問題点

・Jクラブユースは環境面、生活面でサッカーに集中しやすい。また、最大の魅力は「プロ直結」というブランド力である。一方、高校サッカーは通常、指導者は教師でもありサッカー以外の学校生活や学業(学力レベル)、あるいは友人関係なども把握することもできる。教師からみれば、トレーニング計画の立案や練習試合の設定などピッチ内のことから、グラウンドの確保、チーム運営費の計算、スタッフのマネージメント、親御さんのケアなどもすべてやらなければならない。

・高校にくる子は、中学卒業時点で少し技術レベルが劣る子か、あえて高校サッカーを望む子が集まる。

・高円宮杯のプレミアリーグをみても、Jユースと高校チームとはあまりなく(2023年は青森山田高校がサンフレッチェ広島ユースに勝利して優勝)、日本代表をみると、高校サッカーや大学サッカーからプロに転身した選手が活躍しており、決してJユース出身が優位という傾向は出ていない。

・一般的にJクラブユースの選手の目的はプロになることである。一方、高校サッカーはプロの選手になるという目標を持つ選手はたくさんいるが、まずは勝利である。全国高校サッカー選手権で日本一になるという目標は「勝利」の積み重ねであり、勝利のために努力し、工夫する。チームメートや監督・コーチなどと話し、チームワークの大切さを学ぶ。そして苦しい練習に耐える精神力も養成される。これらの経験を通して成長し、人間力は高まる。

勝利にこだわってこそ、スーパーな選手が出てくる。そして優秀な指導者も出てくる。今はそう確信している。

・Jクラブユースは認知度が低いため、大観衆の中で試合をすることがない。(傑出した才能があれば、高校生世代でトップチームに上がって大観衆の前で試合をすることはできるが、そのような選手はごくわずかである)

日本型育成システムを考える

・『長年指導者をやってきたからわかるのですが、子どもを健全に育てるためには、いろんな人間の中に放り込む必要があると感じます。Jクラブは基本的にエリート集団だから、サッカーのうまい子しかいないでしょうが、高校にはテクニックのある子も、下手な子も、頭のいい子も、おっちょこちょいの子も、涙もろい子もいる。そんな中で揉まれていくことで、幅が生まれ、心が豊かになり、自然と競争意識も高まっていく。人間とはそういうものではないでしょうか。』

オシムが日本人に与えた“理不尽”

・高校サッカーで言う「理不尽なこと」には、休憩なしの長時間練習、負けた後の罰走、指示通りできなかったときのハードな練習等がある。理不尽なことがよくないのは必然ではあるが、そこから得られることも小さくない。重要なことは指導者が明確な目的をもって行うことである。怒りを発散するだけのためにやってはいけない。

例えば、負けた後にダッシュを30本やらせて、悔しさや辛さを強く刻みつけることは時にあってもいい。子どもに意地や反骨心を芽生えさせることは決して無駄ではなく、次につながる。

・海外では、韓国には国が定める徴兵制度がある。貧しい国の選手には貧困からくるハングリーさをもっている選手が多い。日本の子どもの多くは、これらの国々とはことなり、経済的にも環境的にもあまり不自由のない中で育ってきた子どもが多く、メンタリティは強いとは言い難い。

理不尽なことが良くないことは確かであるが、理不尽を乗り越えた者が強くなるのもまた確かである。

・元日本代表監督のオシムさんの「理不尽」の裏には緻密な計画性、確固たるポリシーやビジョンがあった。それは、モノを言わない日本人に自己主張させ、臨機応変に動けるようにするためだった。指導者は自分の方向性をしっかりと定めるべきである。

おわりに 今、鍛えなくていつ鍛える

・『人間には「競う」という競争本能があります。競技スポーツはその競争本能を健全な形で具現化したもの。つまり、勝ち負けを楽しむべきものだと私は考えます。

サッカーの場合もそうで、ピッチに立つ選手たちに勝利を目指して懸命に戦います。彼らを取り巻く人々は、その戦いを自分自身が実際にやっているかのような気持ちで固唾を飲んで見守る。こうして多くの人々に一体感が生まれ、大きなムーブメントとなり、歴史が作られてきました。そして今、サッカーは世界一の競技人口を誇り、世界で最も人気のあるメジャースポーツになりました。』

・『「世界基準」に追いつくためにも、我々はもっともっと「勝利」にこだわらなければならない。私はそう強く言いたいのです。「いい選手を育てたいなら、あまり勝に勝ちにこだわるべきでない」という考えを持つ方もいるでしょうが、勝利に執着してこそ大きな前進があると確信しています。勝利を目指す姿勢を持たなければ、実戦に沿った技術、戦術、指導力は決して進化しない。優れたタレントも世界中をあっと驚かすチームも出てこないと思います。

・『名将の方々がされたように全国行脚を繰り返し、凄まじい情熱を持つ指導者の姿を見て学ぶところからスタートして、それを模倣しながら自分の色を少しずつ出し、今は完結編に向かって進んでいます。「守破離』の精神でここまで来たからこそ、勝負へのこだわりの重要性をはっきり認識できた。そう実感しています。』

ご参考:『外国人の指導者は子どもに対してもリスペクトする気持ちを持っている。

これは本書の中にあった本田監督のご意見です。

「これはどういうことなんだろう?」と思って見つけた本が“世界に通用する「個性」の育て方”です。内容はほぼ子育てだったので期待していたものとは違ったのですが、この本の”まえがき”に「なるほど」と思うことが書かれていましたので、以下にご紹介させて頂きます。

『日本と欧米では、子育てに関する概念も方法もまったく違います。

日本の子育ての象徴は、「へその緒」です。

欧米の子育ての象徴は、「ファーストシューズ」です。

その意味は、【へその緒=子どもへの依存】【ファーストシューズ=子どもの自立】となります。

日本人の親に見られる傾向として、我が子は血の繋がった自分のものというイメージがあります。一方、欧米人の親に見られる特徴は、生まれた子どもはすでに一人の人格であり、自分の所有物ではないので、子どもを自立させることをゴールにしています。

どうして、こうも違うのでしょうか?

欧米における考え方のベースは、聖書からきています。

日本においては、子育ての方針は、親が決めることがほとんどです。

親が自分の価値観を子どもに押しつけた場合、それがクリアできれば子どもは安心を得ることができますが、親の基準に達することができないと、すぐに子どもは自信を失います。自信を失うと、人と接することが怖くなりますし、何かに挑戦することもできなくなります。

~ 中略 ~

私は牧師をしています。そのため、欧米の宣教師やクリスチャンとの関りが深いです。

欧米の人たちは、キリスト教の聖書の文化に馴染みがあり、子育てにおいて、日本人と考え方や実際の行動が違うところがたくさんあり、驚かされると同時に、たくさんのことを教えられます。

本書では、子どもの“自己肯定感”と“自立心”を高めることによって、子どもの中にすでに備わっている個性を発見し、さらに伸ばすためのヒントを紹介できればと思います。』

高校サッカー研究2

前回の“高校サッカー研究1”では、人としての成長がサッカーの成長にもつながるだろうと考え、清水桜ケ丘高校(元清水商業高校)の大瀧雅良監督の先生、教師としての“確信”を知ろうとしました。

一方、今回からは、高校サッカー界で多くの成果を上げている監督のお考えや実践していることを勉強させて頂こうと思います。

著者:元川悦子

発行:2011年12月

出版:(株)カンゼン

目次

第1章 “勝利”よりも大事なことがある。 “伸びる土台”を作るのが高校サッカー  栫 裕保

第2章 ボランチ王国の秘密 多彩な個性の伸ばし方  山田耕介

第3章 伝統の継承と新スタイルの確立 南米スタイルにプラスした守備意識  川口 修

第4章 世界で闘える“個”の育成 本田圭佑を超える選手を育てるために  河崎 護

第5章 公立高校から世界への挑戦 “長所をひたすら伸ばす”  平岡和徳

第6章 サッカーでつなぐ地域の絆 東北の背負ったハンディキャップ  齋藤重信

第7章 名将はカメレオン ピッチ上で求められる自立心  本田裕一郎

画像出展:「高校サッカー監督術」

第1章 “勝利”よりも大事なことがある。 “伸びる土台”を作るのが高校サッカー

兵庫 滝川第二高校 サッカー部監督 栫 裕保 

“楽しいサッカー”の追及が選手の探求心を伸ばす

・「人間教育を最優先に考えて、そのうえでサッカーもがんばろう」という考え方でやっている。

・一時的な満足ではなく将来の成功を重視している。

・人間は、楽しいことはどんどん追及したくなる。

・強い好奇心や探求心が生まれれば高校時代は成功である。

全国制覇の裏にあったのはチーム崩壊の危機

・高校総体で準優勝したが、その後チームは下降線をたどり、8月後半の浜名湖遠征では、全国大会未経験の学校相手に1次リーグ4試合に全敗した。8月末には兵庫県U-15選抜の中学生チームに辛くも引き分けた。

強烈な個性の集団がピッチで爆発した瞬間

・2010年度の滝川第二は我の強い人間の集まりだった。

・全国高校サッカー選手権本大会前、20日。持てる力をきちんと発揮できる状態に持っていく必要がある。監督は一日一日を最大限に生かすため、まずは今まで以上にミーティングを実施。バラバラになりがちな選手たちに同じ方向を見るよう意識づけを図った。

・体力の強化トレーニングは、1~2週間、200mx10本(全力疾走)。厳しい練習の中にも楽しさがあること。

・チームをまとめるために、海の砂浜や公園に連れて行って走ったり、野球をやったりして特に遊び感覚のトレーニングも行った。

・チームがまとまることが最も重要である。

・悪いイメージをいかに払しょくすることが重要。

・高校は生徒にとって通過点であり、その後の人生の方がはるかに長く、重要である。それを口が酸っぱくなるほど言ってきた。人間教育を大事にする。そして、人としての成功を強く願う。

滝川第二の土台を作った男・黒田和生

・黒田監督(東京教育大学OB)が滝川第二にやってきたのは、1984年。それまでは13年間は、地元のクラブチーム・神戸FCで少年指導に携わってきた。

・週2回、寮に泊まって自立をうながすためにミーティングや進路指導を熱心にやった。

・少年サッカーの経験から「止める」「蹴る」の基本技術を重視していた。

・個の力で突破できる選手育成を最優先に掲げていた。

・22歳のとき、日本サッカー協会のコーチングスクールで、デッドマール・クラマーさんの考えに感銘を受けた。(「サッカーは技術、戦術、メンタル、フィジカルのバランスを一番に考えてやらないといけない。そのうえで美しく勝つこと。それがグッドゲームだと聞かされた」)

・黒田前監督の失敗「就任4年目のチーム作り」

『当時、急激に強くなった滝川第二は地元の有力選手が集まるようになっていた。全国制覇にはそれだけでは足りないと、黒田前監督自身も精力的に中学を出向いてスカウティングを実施。この年は能力の高いメンバーがそろっていた。ところが、エリート意識の高い彼らの中から天狗になる者が出てチームが混乱に陥った。試合から外すと「何で俺が出られないんだ」と文句を言い始め、勘違いした保護者もクレームをつけてくる。不協和音が生じたチームは勝負をかけていた88年に空中分解し、大事な高校総体も選手権も全国大会出場権を逃す羽目になる。単に上手な選手を集めるだけでは、いいチームは作れない・・・・・・。黒田監督は強く悟ったという。「どんなに恵まれた環境がそろったところで、気持ちがないと続かない。だったら、多少下手でも「滝二でやりたい」という意欲のある子でやっていこうと決めました。そういう選手の方が間違いなく伸びる。それは岡崎や加地も実証していると思います。』

選手の可能性を伸ばすのは“少年の心”

・黒田、栫両監督の共通したサッカー観は「“少年の心”でサッカーに取り組むことの大切さ」だった。

・黒田前監督は1996年春に南米視察に行き、「メンタル面の重要性」を再認識した。それは生徒のモチベーションだった。それを探るため、アルゼンチン、ブラジル、パラグアイを2カ月かけて回り、育成コーチ30人にインタビューした。そこで得た結論は、“向上心を持っていること”“燃える目をしていること”だった。コーチと選手の信頼関係がサッカーを楽しむ土台になっていると感じた。当たり前のようなハグや握手をする。黒田前監督も積極的に握手を取り入れるようにした。

少年のようにワクワクできる環境を常に整えることで、選手たちのサッカーへの意欲は自然と高まっていく。どれだけ高校時代にサッカーに好きになってもらうか。それが選手の将来を左右する。黒田前監督や栫監督が気づき、作り上げたこの哲学は今も滝川第二の重要なベースになっている。

“意識の共有”がチームをひとつにする

・滝二は誰が監督をやろうが、コーチをやろうが、方向性はまったく変わらない。

試合の後も必ずグループディスカッションを実施。練習方法についても週1~2回は打ち合わせの場を持ち、ケガ人状況を確認したり、最近伸びてきた選手がいるかどうか、スケジュールの組み方、当面の対戦相手との戦い方などを徹底的に確認する。そうすれば、指導現場がバラバラになることは絶対にない。』

・1年生大会の試合だけでなく、Aチームと1年生を組ませて同じ試合に出すといった工夫もしている。

・個々の課題に対し指導者は「自分でどう克服するか考えろ」と言って、一つひとつじっくり取り組ませるようにしている。そういう積み重ねが最終的に大きな力になる。スタッフはこの考え方を常に共有している。

・戦術の基本は「攻撃的なパスサッカー」であるが、選手の個性に合わせて柔軟に変化をつける。

「このサッカーならやりやすいし、楽しいし、勝てる」というスタイルを選手同士が構築するのが“滝二流”である。

・スタッフワークを大事にしながら、選手一人ひとりの個性を大切にすることは、100人を超える大所帯になると非常に難しいことだが、彼らは努力を惜しまない。例えば、下級生で控えの選手でも、生徒は遠慮なく。栫監督にサッカー以外の相談事でも自由にやってくる。

・チーム全体がガラス張りで、部員一人ひとりと顔の見える関係ができているのは、黒田前監督と栫監督が話し合いを重ねて同じ価値観を共有し、「滝二らしさ」を追求し続けたから。彼ら2人の名将の貢献度は計り知れないほど大きい。

新監督の就任とチームの低迷

・自分たちの仕事は選手を育てること。特に1年生、2年生の強化が重要。

・新年度の活動のスタートは「六甲山登山」

・トレーニングは春におおよその年間計画を策定し、プリンスリーグをこなしながら、試合の反省を踏まえた練習を1週間、また1週間と積み上げていく形をとった。

・もっとも重視しているのはテクニック。個人のスキルをあげることが基本である。

・メンバーはあまり固定せず、チーム全員と信頼関係を作ることを重んじている。選手との直接対話を重視する理由はここにある。

サッカー以外のことを自分で考えることの重要性

・高校生はさまざまな角度から刺激を与えることが肝要である。サッカー以外のことを考える時間を作る。

・黒田前監督は読書感想文(月1回。スポーツ選手の自伝や歴史的人物の英雄伝など))や美術やクラシックなど芸術との触れ合いをやってきた。

・黒田前監督が15分の話を聞かせて、感想や意見を紙に書かせる。これは話に集中する能力を高める。監督やチームメイトの話を聞いて実践する力が求められる。

・栫監督は直接的な会話を通して、選手の聞く力や考える力を養いたいと考えている。サッカーノートや感想文では本心かどうか分からない。それが誤解を生む可能性もある。

・1年のテーマを漢字一文字で表す。それを生徒たちだけで考えさせる。これは2002年に始まった。選手権初制覇の2010年は『志』だった。

選手が伸びていく土台を作るのが高校サッカーの役割

・彼らの人生はこれからである。何年かたって、結婚したとか、就職したとか、ビジネスで成功したとか、そういう報告をもらう方がうれしい。

・選手権の優勝監督になっても指導者として成長していかなければならないことはいっしょである。

・高校サッカーは学校教育の一環であり、人間的成長が第一である。

・『僕ら育成の指導者は、選手たちをサポートして、高校を出た段階でもサッカーに取り組みたいという十分な余力を残してやることが大事。それが一番の仕事だと思うんです。サッカーへの意欲が高校でいっぱいになってしまったらその先は伸びないだろうし、逆にまだまだ余力があれば際限なく成長できる。僕ら教育に携わる人間は彼らの才能や意欲にフタしないことがなによりも大切なんですよ』

個性を伸ばすために行う「フタをしない指導」

・滝二は「自由」と「規律」のバランスが取れている。

・7割は個性を伸ばし、3割は不得意のことの克服に当てるような感覚でやっている。

画像出展:「高校サッカー監督術」

第2章 ボランチ王国の秘密 多彩な個性の伸ばし方

群馬 前橋育英高校 サッカー部監督 山田耕介

タイプの違うボランチの育成~自分にしかない武器を持て!

・自分だけの特徴や武器にこだわることは良いことだが、それらはあくまで選手自身の視点になる。指導者が与えるヒントも非常に重要である。

世界で闘うための理想のボランチ像

・ポゼッションを向上させるトレーニングを積極的に取り入れている。

-ワンタッチ、2タッチのボール回し

-グリッドの広さを細かく変化させながらの7対7、8対8などのミニゲームは毎日行っている。

-グリッドは広さだけでなく、ハーフコートの真ん中にタブーゾーンを設けたり、フリーマンを置いたりと工夫を凝らし、選手達の考える力、判断力を養っている。

・テーマは1週間単位で設定している。

・日曜日のゲームで課題が出たら、月曜日のミーティングでどう修正するかを選手たちと話し合い、1週間かけてその課題に取り組む。

・練習の最後にミニゲームをやるのは、その日細かく取り組んだことを実践の場で出させるのが目的である。敵がいる中でのボールコントロールや、ゲームの流れの中で発揮できない技術では意味がないためである。

・優れたテクニックを持っている選手は少なくないが、運動量やフィジカルコンタクトも必須、両輪である。指導者はこれらの部分に焦点をあて、合理的、科学的なトレーニングを考える。

画像出展:「高校サッカー監督術」

第3章 伝統の継承と新スタイルの確立 南米スタイルにプラスした守備意識

静岡 静岡学園高校 サッカー部監督 川口 修 

新たな“静学スタイル”

名将井田監督の後を継いだ川口監督は「今までとまったく同じことをしていても勝てない」と考え、新たなエッセンスとして「守備意識の徹底」を目指した。従来のチームは攻め中心のため、攻守の切り替えやボールへの寄せをサボりがちな選手も見受けられた。それを修正しないと勝てないと確信した。

・川口監督がブラジル留学で経験したのは、ブラジルの選手達の「球際の強さ」だった。

・苦しい状況でもチーム一丸となってカバーし合う姿勢も重視した。

観衆を虜にする独創的な静学サッカー

・サンパウロFCから招聘したコーチが行ったのはハーフコートの11対11だった。6カ月後、選手の判断や球離れが格段に速くなった。これが静学を変えた。

元祖・テクニックサッカー創造者のもとで学んだ12年

・全国大会の大舞台で一番重要なのはメンタルである。

・選手の自由を尊重しながらも、肝心なところでは厳しさを突きつけるのが「井田流選手操縦法」だった。

・井田前監督は宮本武蔵や坂本龍馬ら時代の名士たちの本をよく読んでおり、格言や名言もよく知っている。それをヒントに自分の言葉にして選手に語りかけることに長けていた。

・井田監督が常日頃言っていたこと。

-「こだわってボールにたくさん触れればブラジル人のようになれる」

-「手と同じように足でボールを扱えるようにしろ」

-「静学のサッカーは美しく華麗じゃなきゃいけねえんだ」

・井田監督の「斬新な采配」も特筆すべきものだった。負けるのが怖いと思い切った采配はできないが、井田監督は全く違っていた。

-「光るやつがいたら、俺は学年関係なしに使う。多少のリスクを冒しても、どんどん試合に出すんだ」

-新人戦は登録25人を全員使うのが当たり前。ポジションもシステムもどんどん変える。これは「努力をするやつにはチャンスを与える」ということだったのではないか[川口監督])

-固定観念を取り払って使うことで、新たな才能を発掘することができる。

名将はいかにしてプロ選手を輩出したか?

・「俺がこいつらをプロにしてやる。その方が面白いだろ」と口癖のように言っていた。これはボールテクニックの練習を懸命にやって、他のチームの選手より個人技を磨いてきたからが大きい。

・日本代表になる選手は何が違うのか。内田篤人(清水東⇒鹿島アントラーズ)とはどんな選手か。

-『内田は高校2年でサイドバックに転向した選手。瞬間的なスピードが大きな武器ですけど、それ以上にすばらしいのが、自分で何をすべきかを考える力がある。規律を持ってサッカーに取り組むことができる。そこが学園の選手との決定的な差。テクニックや身体能力はもちろんのこと、彼のような賢さを育てないといけないなと強く感じています。』

ユース年代の環境変化と静学サッカーの存在意識

・川口監督はJユースの台頭の危機感から、静学サッカーの原点回帰を図り、新たな発展型を模索すべきではないかと考えるようになった。

“アイデア”と“ひらめき”こそが静学スタイルの原点

・朝錬6~7時は個人技を磨く時間。午後錬はゲーム形式の戦術練習中心。

・従来の練習を変えたわけでないが、結果は出なかった。それは「余裕がなかったから」である。テクニック重視の静学サッカーには「心のゆとり」が必須だが。これを失っていた。自分の焦りが子どもたちに伝わった。

個と組織が融合した強いチームになるために

・井田前監督にはあまりやっていなかったミーティングを毎日のように実施。静学のコンセプトを徹底的に植えつけた。

・『練習前の15~20分という短い時間ですけど、話をすることでメンタル面を整えて規律を持たせることができるし、チームと進むべき方向性も確認できる。ミーティングにはいろんなプラス効果があるのかなと思いました。』

・守備意識を高めたのは、より迫力ある攻めを繰り出すためである。また、格上のJユースと互角に渡り合うためには、相手からボールを奪うところから考えないと、華やかな攻撃サッカーは実践できない。

・バルセロナの華麗で効率的な攻撃は、組織的な守備と攻守の切り替えの速さがあるから成り立っている。

・球際の強さは必須。選手たちに「1対1で負けるな」「練習から厳しく行け」と言い続けた。

ボールを取られた瞬間の重要性を強調した。これは失った後の3秒間はボールを奪う絶好のチャンスだからである。失った瞬間は休みを入れてしまいがちだが、相手も奪った直後はバランスが悪いのでハードワークすれば、主導権を握れる可能性は高い。また、このような話を理論的に丁寧に説明することで選手の理解(何が大事か等)が上がる。

伸びる選手は自分の意思で判断できる

スーパーチームを作るには、自分の意志で判断できる選手を育てないといけない。人間性の部分が非常に重要になってくる。自主性を持つようになるとサッカーの上達が早い。

・自由でヤンチャな一面を持ちつつ、いざ勝負となったときには規律と厳しさを持てる選手たちが出てくればチーム力はもっと上がる。

画像出展:「高校サッカー監督術」

第4章 世界で闘える“個”の育成 本田圭佑を超える選手を育てるために

石川 星稜高校 サッカー部監督 河崎 護

自主性こそが、勝利の絶対条件

・河崎監督は、「自立心の向上」を重要なテーマにしているが、その契機となったのが全国トップに駆け上がった2000年からの5年間である。

自分たちで考えてやるサッカーの恩恵は、互いを思いやる心と強固な一体感である。

自立心の高い選手がチームにもたらしたもの

・良い相乗効果が生まれるのが、高校サッカーの良さである。

勝ちたければ子どもたちが自ら変わらなければダメだ自主性というのは、勝利への絶対条件である。

第三者の視点を取り入れたチーム作り

自分に足りないものを探し、学び続ける謙虚さは指導者の原点である。河崎監督がそういう姿勢を持ち続けているからこそ、選手も高い目標をもってサッカーに取り組める。

チームを伸ばすために、個の成長を考える

・河崎監督は、将来的に大きく羽ばたく選手を育てたいという思いが強い。「選手第一主義」と言える。選手の個性を見極め、一人ひとりの目標設定を明確にし、方向づけさせるという試みを行っている。とりわけ、個人面談やピッチ外でのコミュニケーションを大事にしている。

気配り上手はぐんぐん伸びる

河崎監督はとりわけサッカー指導の枠を超えた人間教育に強いこだわりを持っている。特に強調しているのが、「気配りのできる人間になれ」ということである。これは、気配り上手になれば苦境に陥ったとき、味方を励まして前向きにする行動もとれるだろうし、パスを出す・もらうのタイミングもうまく計りながらプレーできるはずである。

・掃除や道具管理など生活態度に関しても強いこだわりを持っている。

・春の福岡フェスティバルの大会では、優勝と同じくらい「グッドマナー賞」を真剣に取りに行ったこともある。

第二、第三の本田圭佑を育てるために

・河崎監督はチームを固定化するより、可能性のある選手に出場のチャンスを積極的に与える。

試合中にオーバーコーチングせず、追い込まれた状況でもじっと黙って戦況を見守っているのは、ギリギリの局面こそメンタルを鍛える絶好の機会だからである。選手の逞しさや忍耐強さは、河崎監督の辛抱強い意識づけの成果であると考えられる。

強いメンタリティを養うために、頻繁にミーティングを開いている。これは選手同士で考えさせることが、苦境を打開する力になると考えているためである。

・『本田の頃は子どもたちが自分たちで話し合いをしていたが、今の子は意見をぶつけ合うことを嫌う傾向が強い。それを改善するために、河崎監督は練習後にたびたび場を設けて、「お前らで考えろ」とよく言っているという。こうした試みの一つひとつが、30年近く夢に見続けてきた。“全国の頂点”へとつながるに違いない。』

画像出展:「高校サッカー監督術」

第5章 公立高校から世界への挑戦 “長所をひたすら伸ばす”

熊本 大津高校 サッカー部監督 平岡和徳

奇跡は起きるんだ。俺についてこい!

・赴任した熊本商業高校は全校生徒1500人中、男子は250人。サッカー部は12、13人。グラウンド確保と校内スカウトから始めた。指揮官の姿を見て、選手たちも本気になっていった。そして翌年には部員が30人なり、3年目にはA、B2チーム作れるようになった。その後、有望な選手が入学し4年目には高校総体県大会で29年ぶりの優勝を勝ち取った。さらに、「平岡のところに預ければ選手が変化する」と評判になり、チームの強化は進んだ。

0から1を創ることの楽しさ、大津での再出発

・大津高校では熊本商業高校とのは校風が違っていたため、朝練を始める一方、「午後錬は100分」として集中して練習した。一方、選手には「セルフマネージメント」を強く要求した。

・チーム方針に従わない我儘な選手は、テクニックがあっても実績があってもレギュラーから外した。

愛情を持って厳しくしてきたが、それに反応する選手は伸びた。ブラジルには「水をやりすぎた木は枯れる」という格言があるように、過保護は子どもの成長を妨げる。

九州はひとつ~人と地域の結びつきの重要性~

・鹿児島実業の松澤隆司前総監督が次々と代表選手を送り出してきたのは、伸びる選手を見極め、ストロングポイントを研ぎ澄ますことに長けていたからであろう。

“あきらめない”という才能を持った男・巻誠一郎

・巻誠一郎のように遅咲きの選手は必ずいるので、指導者はその事を改めて認識すべきである。

“大津スタイル”の確立へ

・スカウティングでクレームがついたため、「練習へのフリー参加」を考えた。中学生でもクラブチームでもOK.。用意している大津のウエアを着て、大津の部員といっしょにすべてのメニューをこなす。

・朝錬は週末の試合の反省点をチェックする。午後の100分の全体練習後は、短時間のシュート練習やウェイトトレーニングなどを行う。シャワーを浴びて19時には帰宅する。そんな習慣を見につけ、24時間を自分でデザインできるようにする。

・「課題発見能力」「自主性」「24時間のデザイン力の3つを身につければ、どこへ行っても、どんな仕事に就いても活躍できると考えている。

ここで生きる力を培い、お互い助け合えるような関係を構築してほしいです。」

・特定の保護者との飲食は一切しない。お中元やお歳暮も受け取らない。これは、指導者は何事もガラス張りでなければならないと思うためである。

いまだ果たせぬ夢、全国制覇へ

・『勝つためには常にゴールを狙い続けないとダメだし、団結力も不可欠。あきらめない才能を磨くことも重要です。巻のアグレッシブさを学んで苦しいときにこそ声を出さないといけない。一事が万事で、細部にまでこだわりを持つことが勝利の女神を引き寄せる。こうしたコンセプトを11項目作成し、選手たちに配って意識高揚を促しています。』

画像出展:「高校サッカー監督術」

第6章 サッカーでつなぐ地域の絆 東北の背負ったハンディキャップ

岩手 盛岡商業高校 サッカー部総監督 齋藤重信

東北人のメンタリティと全国ベスト8の壁

・「見る人、やる人、教える人にとって面白いサッカー」が究極の理想。

・全国大会ベスト8の壁を破れなかったのは、「自分たちは後進地域からやってきた」という弱気なメンタリティが原因だった。そのことに気づいたのはだいぶ後になってからだった。

病との闘い、日本一の先に見えたもの

人というのは人のためにと思うとすごい力がでる。

努力を怠らず、粘って粘ってガムシャラに前へ進み続けられたら、それなりの成果が得られる。その重要性を学ぶ最高の場所が高校サッカーである。

画像出展:「高校サッカー監督術」

第7章 名将はカメレオン ピッチ上で求められる自立心

千葉 流経大柏高校 サッカー部監督 本田裕一郎

3・11 東日本大震災を経て

・休みの重要性、長期オフの必要性を感じた。

サッカーで闘える選手を育てるために

ゴールに対する執着心が海外コーチと日本コーチの大きな差である。海外のコーチはシュート練習においてさえ、ゴールを外すことに失望する。その点を取ること対する思いの強さの違いは日本人コ―チとは比較にならない程大きい。

自立心の高い選手を育成するために

どんな修羅場に立たされても、平静さを保てる強靭なメンタリティを養なう必要がある。そのためには「人間力」を高める必要がある。そのために、毎週月曜日のミーティングや寮の点呼では、3分間スピーチ、小論文の執筆などを日常的に行っている。それは、「選手たちが自ら率先して物事を判断できる自主性、自立心を見につけてほしい」と願うからである。

・上級生には下級生に任せる雑用も、「何事も自分たちが先頭に立ってやらないといけない」というリーダーの自覚を持たせる。チーム内の全員に美化委員や規律委員などの役職を与えて責任体制を明確化するといったことも最近の取り組みの一例である。常に新たなヒントを追い求め、すぐに実戦の場に取り入れる。

高校サッカー研究1

本書に登場される監督は、いずれも強烈な個性とずば抜けた指導力で選手を牽引されています。そして、選手は勝利を目指し、監督の教えと自ら考える力を磨いて、人間的にも日々成長していることは間違いないと思います。

この傑出した監督の中から、大瀧監督をブログで取り上げさせて頂いたのは、大瀧監督が監督以上に先生、教師の印象が強かったためです。

高円宮杯JFAU-18サッカーのトップリーグである“プレミアリーグ”は東日本と西日本に分かれ、各12チーム、計24チームが参加しています。2023年は高校生チームが13チームとJリーグユースのチーム数を上回っています。東西のプレミアリーグの優勝チームが覇権を争う最後の試合を制したのは、青森山田高校でした。

プロ選手になりたい才能豊かな中学生の多くはJリーグユースチームに憧れます。そのため、高校でサッカーを続ける選手は技術、実績面でやや劣っているというのが一般的な認識です。また、Jリーグユースチームの方針は勝利が最大の目標ではないのかもしれません。しかしながら、ワールドカップの日本代表選手の活躍をみると、2018年のロシア大会でも2022年のカタール大会でも、高校サッカー、大学サッカーを経験している選手はJリーグユース生え抜きの選手より記憶に残ってます。

「これは何を意味しているのか?」、これはやはり“人間力”ではないかと思います(人間としての成長とサッカーの成長は関係しているという意味です)。日本ほど裕福でない国の子供たちの中には“ハングリー精神”が見られます。“人間力”と“ハングリー精神”は異質のものだと思います。しかし、苦しい練習に耐え、勝利を目指し、チームメートからの信頼を獲得し、自分の目標を達成しようとする強い目的意識、自らを奮い立たせる強い意志という観点からは重なる部分もあると思います。

残念な結果に終わった我が母校にとって、人間的な成長が後押しするだろう。「人間力をあげるにはどうしたら良いのだろうか?」この疑問を大瀧先生から学びたい。これが今回のブログの主題になります。

著者:青柳 愛、笠井さやか

発行:2015年12月

出版:東洋館

目次

はじめに

第1章 暁星高校 林義規

第2章 市立船橋高校 朝岡隆蔵

第3章 富山第一高校 大塚一朗

第4章 京都橘高校 米澤一成

第5章 清水桜ケ丘高校 大瀧雅良

第5章 清水桜ケ丘高校 大瀧雅良

厳しかろうが、子供たちを一人前の男にするためにやるべきことがある。

1951年9月15日、静岡県生まれ 

・風間八宏、藤田俊哉、名波浩、川口能活、小野伸二、この顔ぶれただけで、大瀧監督がどんな監督なのか興味がわきます。そして、こうした卒業生たちの口から出る言葉は、「サッカー云々というよりも人としての生き方、考え方を教えてもらった」ということです。これは冒頭の大瀧監督の教育者を象徴する言葉に直結します。

高校サッカーの歴史を牽引されてきた監督達は、信じがたいほどの情熱と揺るぎない勝利への追及、そしてそれが生徒の自立心を高め、最高の教育の場となること。サッカーを通じて学んだことは人間としての成長を後押しするだけでなく、仲間との絆を高め、生涯に渡るかけがえのない友を得ることができるということを語っています。

大瀧監督も、もちろん同様なものをお持ちなのですが、他の偉大な監督と異なる印象を受けるのは、監督以上に先生、教育者の側面の部分のように思います。このことが、大瀧監督というより大瀧先生を知ることが、高校サッカーの神髄に触れることできるのではないかと思った理由です。

大瀧先生の言葉の深みは、戦後の荒波に揉まれギリギリの中で生き抜いてきた人だからこそ、生まれるものだと思います。サッカーを通して考え抜くことを伝えてきたという言葉は、とても短いですが、とても重いものだと思います。

『理屈はいらない。いいものはいい』

・日本人は理屈が先で行動が後になってしまっている。

『己のことは己で守る』

・大瀧先生の根底にあるサッカー観は“生きる力”である。自分のことは自分で守れるかということである。守備を大切にする気持ちは必然である。このことは先生自身が戦後の日本を必死に生き抜いてこられた自負があるからだろう。

・プロ化により部活からクラブに軸足が変わる中、サッカーしか教わらない子供はサッカーでも伸び悩む傾向がある。これは大瀧先生が2000年(Jリーグ発足は1993年5月)頃から感じていたことである。

『男としてどうやって生きていくかを姿勢で見せていく』

・すべての人はそれぞれの歴史を背負って生きている。何と言われようが子供たちに、男として「お前はどうやって生きるんだ」ということを伝えたい。そして、信念をもった男になってもらいたい。

『誰かがケツを押してやらないといけない』

・教師の道を選んだのは、高校の時の教師との出会いだった。その先生は貧しさの中で、ボタ山に行って石炭を拾い集め、そのお金を学費にして静岡大学に入って教師となった。話が苦手と思っていた先生は人一倍勉強された。相手を納得させてしまう、その先生の文章の素晴らしさに感動し、教師になりたいと思うようになった。

人は壁にぶつかった時、乗り越えるためのきっかけや言葉を求めている。大事なことは真実を見逃さないことである。それは何か、子供たちを一人前の男にするためにやるべきことがあるって考えてやってきた。

『「気を遣えるやつ」は成長する』

・性格は千差万別だが、チームの中でどうすべきかということを考えている子。負けず嫌いで諦めない粘っこさを持っている子は成長する。

『一生懸命生きているやつを応援する』

・大瀧先生の周りには戦争を体験した先生が数多くいた。その先生達から「一生懸命生きろよ」と言われ、その重みのある言葉を受けとめ、一生懸命に生きるしかないと思ってきた。だから、毎日の戦いの中で自分を少しでも高めようと頑張っているやつを見ると、なんとか手助けしたいと思う。

・特攻隊は大卒のエリートである。彼らの多くは家族を思い、自分の仲間を思い行動した。特攻隊を美化することは問題かもしれないが、そこには否定できない大切にすべきものがあると思う。

『しのぎを削って真っすぐにやるだけ』

・静岡学園の井田さんと静岡でしのぎを削ってやってこられたことを誇りに思う。静岡で勝ち残れるは1校だけ。あとは全て敗者である。その価値観は井田さんもいっしょ。だからお互いに指導者としてリスペクトしてきた。

『人生を背負って後悔をしないで生きてほしい』

・本当は養子に出される運命だった。家族4人の暮らしは貧乏のどん底にあった。今になって思うことに、ここだけは貫いて生きたよなっていうものが欲しいと思う。自分にとってそれはサッカーだった。自分の教え子にも、貫いて生きるということを考えてほしいと思っている。

・人は自分一人では限界がある。大瀧先生は人間の性をよくよく理解されている。だからこそ、ここぞというときに人間の限界を超える可能性を引き出させることができる。

・大瀧先生がサッカーを通して最も大事にしてきたものが生き方である。

圧倒的な当事者意識をもつことで、我々はそれぞれの役割を全うできる。その意識をもった者だけが日本サッカー界の未来を動かすことができる。この大瀧先生の考えは教え子たちに伝わっており、そしてしっかりと受け継がれている。

・目に見えないが最も大事なものであることを、私たちに気付かせてくれる。大瀧先生はそんな存在である。 

大瀧先生の章の最後は、ご息女である大瀧由希乃さんのお話しです。ここには書かれているのは深い家族愛だと思うのですが、もう一歩考えを進めてみると、大瀧先生は、年齢、性別、生い立ちなどに一切かかわりなく、相対している個人を純粋にリスペクトし、その人のために何ができるか、何をすべきか、何を大切にしたら良いのかなどを考え抜き、一番の選択肢を見つけ、それを正直に発信しているのではないかと思いました。もちろん、その土俵となっているのがサッカーというスポーツの場ということなんだと思います。

以下にご紹介させて頂いたのは由希乃さんの目に映る大瀧先生です。大瀧先生の姿を知ることができる心動かされる文章です。

『サッカーの話は、昔からよくします。今でもLINEで長文が送られてくることもありますよ。サッカー論とかを熱く話しますね。実家に帰って食卓を囲んでいるときもサッカーの話ばかりです。

ほとんど家にいなかったんですよ。サッカー漬けでしたから。夏休みももちろんなくて家族でどこかへ行くこともほとんどなかったです。だからこそですけどね、毎日の決まり事はありました。例えば、ご飯は一緒に食べるとか。朝ご飯は午前5時、6時と、早くても二度寝してもいいから一緒に食べましょうなどと決まっていました。

それから、どこか遠くへ出かけることはほとんどなかったのですが夜、父が学校から帰ってくるとドライブに出かけるんです。清水に住んでいたので、富士宮とかに30分とか1時間かけて行くんです。何も見えないんですけど、家族揃ってドライブに出かけていました。コースはいつも決まっていましたから、だらだらと運転するんですよね。その間、今日一日何があったとか、サッカーの話しとかするんですよ。家族間のコミュニケーションの取り方の一つでしたね。姉と私は小さかったから、後ろの席で寝ることも多かったですけど、父と母がこういうことがあったんだよねって話しているのを聞いていて、ああそういう人になると褒められるんだな、こういうことをやったら親は困るんだなとか、父親に怒られるんだなって察するんですよ(笑)。

今振り返ると、サッカー部での出来事を通して、私たちに大事なことを教えてくれていたのかなって思いますね。基本的には考えさせること、考えること、自分で答えを出すことが大事だって言っていました。父親の答えも私は聞くことはできますが、でもそれは答えではなくて、私が実際にどう考えてどう表現できるかが一番大切なんです。父は私の考えに対して「なんで?」「なんで?」「なんで?」って絶対に聞くんですよ』

『由希乃さんは最後に、「父には感謝すること、努力することは忘れるなよとよく言われるんですが・・・」と言って携帯画像に保存した父からの手紙2枚を見せてくれた。社会人になってはじめて一人暮らしを始めたときに送られたときのものだという。そこには、娘を思う父・大瀧の愛情が溢れていた。

「前略 紅葉から落葉の季節になってきました。お仕事大事とはいえ管理が大事ですぞ。心と体が元気なら、何事も出来る。馬鹿でも一つのことに打ち込めば・・・」「努力に勝る才能なし 足らざると知るは成長の第一歩 ぼちぼちですね」

手紙の内容を見せてくれたあと、由希乃さんはこう続けた。

「成長したと思うともう成長はない。常に頑張っているその努力が才能なんだよって。才能があるからできるんじゃなくって、努力し続けることが才能の一つなんだって。だから、父もきっとまだまだ足りないって思いながら監督業を続けているんだと思います。この言葉を見ると、まだまだだって、今日も頑張ろうって前向きに思えるんです」。』

嬉しいニュース

昨年は厳しい結果となった、我が母校の浦和西高サッカー部ですが、新シーズンの初公式戦である「高等学校サッカー新人大会南部支部予選」は、シード校を除く43校によるトーナメント戦で行われ、西高が6年ぶり(多分)に優勝しました!

これにより、新人戦県大会および関東大会予選会の出場も決まりました。

※2024年2月3日(土)

※さいたま市与野八王子サッカーグラウンド

 

デンマークのスマートシティ5

著者:中島健祐

発行:2019年12月

出版:学芸出版社

目次は”デンマークのスマートシティ1”を参照ください。

6章 イノベーションを創出するフレームワーク

1.オープンイノベーションが進展する背景

厳しい風土が育んだ異業種連携

・デンマークのオープンイノベーションは、文化風土、産業の歴史と密接に関係している。

・天然資源が乏しく、人口の少ない国であり、厳しい自然の中で暮らすために人々は必然的にお互いに協力しあうという文化を育んできた。酪農を営むためは関係者が協同することが不可欠であったし、家具や建築の世界も連携する必要があった。

複雑化する社会に対応できないシステムの更新

・デジタル化によって各分野の個別システムがつながり、複数の分野を同時に考慮した最適化が行われないと、暮らしやすい都市はつくれないが、現実には行政組織は部門ごとに縦割り組織になっているので、柔軟に対応することができない。

現代は19世紀につくられた法制度に基づく社会システムの上で、20世紀のビジネスモデルを展開し、そこに21世紀の技術を使おうとしている状況になっているので、さまざまな矛盾が現われている。こうした、時代遅れの社会システムを現在に合う形に再構築するには、異なるセクターの知見を組み合わせたオープンイノベーションが欠かせない。

2.トリプルヘリックス(次世代型産官学連携)

・デンマークではPPP(公民連携:Public Private Partnership)によるスマートシティ・プロジェクトの推進やイノベーションの創出で民間のノウハウを取り入れている。

・コペンハーゲン市はPPPを推し進めるために2009年、コペンハーゲン投資局、広域コペンハーゲン、ジーランド地域が連携して「コペンハーゲン環境技術クラスター」を設立した。このコペンハーゲン環境技術クラスターが特に力を入れていたのが、「トリプルヘリックス(Triple Helix、デンマーク型産官学連携)」である。

デンマークのトリプルヘリックスは、公的機関、民間企業、研究機関がダイナミックに連携してプロジェクトを進める。日本では各機関からの出向となるが、デンマークでは、このクラスターの正規雇用者となる。

・クラスターの運営責任者はプロジェクトの企画書を作成し、国や自治体、民間企業から出資を募り、プロジェクトを実行する。運営責任者は自身の給与もプロジェクトを通じて捻出しなければならないので、必然的に企画力、関係者を巻き込むコミュニケーション力や交渉力に長けている人材が雇用される。

クラスターに腰掛けでいる人はいない。それぞれの職務責任も明確なので、結果を出すことに真剣になる。

・このトリプルヘリックスの成功事例としては、コペンハーゲン市やオーフス市のスマートシティ・プロジェクト、オーデンセ市のロボット・プロジェクトなどが挙げられる。

3.IPD(知的公共需要)

・IPDはPPPを高度化した手法である。特に複雑で革新的な要素を取り入れた公共プロジェクトを計画・実証し、大規模なインフラソリューションを調達・導入する際に有効であるとされている。

4.社会課題を解決するイノベーションラボ

マインドラボ

・「マインドラボ」はデンマークのフューチャーセンター(世界中で展開され、イノベーションを創出する手法として一般化されている)であり、2002年、経済商務省のインキュベーション組織として立ち上げられ、最後は産業・ビジネス・財務省、雇用省、教育省と3省庁の管轄になった。

マインドラボは、省庁横断的に社会問題を解決するための政策を設定し、ソリューションを開発、それらを社会実装することを目的に設立された。加えて国と自治体を結びつけ、さまざまな利害関係を統合する横断的なプラットフォームとしての機能を持つ。

・マインドラボは2018年に閉鎖され、よりデジタルに特化した組織の「破壊的タスクフォース:Disruption Taskforce」に引き継がれた。

※ご参考:“デンマークの公共部門におけるデザイン思考の実践―クリスチャン・ベイソン氏講演内容より―”

ブロックスハブ

「ブロックスハブ」は多様な企業や研究者がより良い都市づくりのソリューションを創出するためのイノベーション・ハブである。

・2016年に建築や都市プロジェクトを支援する民間組織「リアルダニア」、コペンハーゲン市、政府の産業・ビジネス・財務省により設立され、2018年から運用を開始した。

・ブロックスハブは未来のスマートシティ・ソリューションの戦略拠点であり、多国籍企業にとってデンマークや北欧市場へのゲートウェイとして位置づけられている。

・世界中に似たような組織やイノベーションセンターはあるが、異分野横断的な連携を実現できている組織はまだないというのがブロックスハブ幹部の見解(2018年9月)である。それをコペンハーゲンでつくりあげて世界に還元していこうというのがブロックスハブの狙いである。

※ご参考:“BLOXHUB

5.イノベーションにおけるデザインの戦略的利用

ユーザー・ドリブン・イノベーション

・デンマークでは2010年前後からイノベーションに注力した取り組みを強化しているが、多くは技術主導型のイノベーション議論が中心であった。一方、利用者をイノベーション・プロセスに巻き込むべきとの認識が高まり、デンマークでは伝統的に人間中心の考え方が浸透していたこともあり、その考え方を体系的にまとめ方法論として組み立てられたのが、「ユーザー・ドリブン・イノベーション」である。ただし、これはデンマーク固有のものではなく、フィンランドやスウェーデンなど他の北欧諸国でも取り組まれている。

デザイン・ドリブン・イノベーション

・ユーザー・ドリブン・イノベーションはユーザー自身が経験していないもの、認知していないものには対応できないという限界がある。そこで出てきたのが、デザイン・ドリブン・イノベーションである。

・アップルウォッチなどのウェラブル製品もデザイン・ドリブン・イノベーションで新たな価値を創出している。

データ・ドリブン・イノベーション

・デザイン・ドリブン・イノベーションと並行する形で取り組まれているが、「データ・ドリブン・イノベーション」である。デンマークにはオープンデータの形でビッグデータが豊富にあり、それを利用できる環境にあるので、データを有効活用してイノベーションを創出するという取り組みである。

日本とは異なり、デンマークのビッグデータは、業種や組織を横断したオープンデータである。

デザインドリブン・イノベーションから新たな展開へ

デンマークは人工知能や量子コンピュータでも世界トップクラスの研究を行っている。人工知能についてはXAIと言われる説明可能な人工知能を、社会インフラに導入し、さらに先進的かつ高度化したデンマークシステムを構築するべく、実証実験を進めている。また、量子論の育ての親とされる、理論物理学者ニールス・ボーアが設立したニールス・ボーア研究所では量子コンピュータの研究開発が行われている。

こうした動きを反映して、デンマークでも従来のデザイン・アプローチでは社会システムの変革を導くことは難しくなりつつあると認識しているデザイナーは、デザインを軸に、ビッグデータ+科学+ビジネスモデル+政府&市民を融和した総合的な価値体系の確立を模索している。

画像出展:「デンマークのスマートシティ」

6.社会システムを変えるデザイン

・デザインの戦略的利用の他に、社会システムを変える「ソーシャルデザイン」の取り組みがある。その誘因はデジタル化とIoTなど技術の進展と複雑に絡みあう課題である。

・デンマークは2018年に世界電子政府進捗度ランキングで1位になった。その評価項目の中で行政管理の最適化、オンライン・サービス、ホームページの利便性、オープンデータ活用で1位になっているが、これらの高評価の背景には、ソーシャルデザインが行政部門に浸透していることが関係している。

ソーシャルデザインが重視されているのは、都市の中で相反する課題を同時に解決しなければならず、社会システムから生みだされた課題は、社会システム自身を変えない限り解決することは難しいからである。なお、相反する課題とは、高齢化対応と質の高い社会福祉サービス、都市化と移民問題、スマートシティの推進とグリーン成長の実現、移民に対する人道的な対応とナショナリズムへの対策などであり、いずれも非常に難しい舵取りに直面している。

社会システムの設計に必要な要素は次の4つである。

1)成果への集中:公共サービスを社会に実装し、具体的な成果を見える形で提示すること。

2)システム思考:問題と利害関係者の相互関係を把握し、複雑化する社会課題を横断的に俯瞰しながら管理できる能力。

3)市民の参加:単発の市民参加イベントではなく、市民生活の深い洞察を通じて、供給者である行政の目線と需要者である市民の目線の調和を図ること。

4)プロトタイプ:少ないコスト・資源で高い価値をもたらすために、素早い実証と可能性のあるアイデアの改善。

デンマークでは、ある意味これを実現するために、「マインドラボ」で実験が行われ、「IPD(知的公共需要)」の体系が試され、そして「ブロックスハブ」の取り組みが始まったと言えるかもしれない。そのフレームワークはまだ確立されていないが、デンマークの取り組みを見ているとかなりノウハウと知見が蓄積されていると思われる。

・最近では、デンマーク・デザインセンター(DDC)」が公的セクターにデザイン手法を取り入れたイノベーションの実現とそれによる新たな社会システムの実現を目指している。元マインドラボの幹部で、DDCのCEOに就任したクリスチャン・ベイソンは、これを「パブリックデザイン」と呼んでいる。

DDCが強調していることは、リーダーシップの重要性である。人間中心でイノベーションを実現するソーシャルデザインを推進するためにも、公共の利益に基づくリーダーシップがなければ適切な組織をつくることはできないし、組織をまとめあげることもできない。これらを実現するために、2019年から行政や企業の幹部を対象にしたソーシャルデザインのリーダーシッププログラムがある。

※ご参考:“国営デザイン・コンサルファーム DDCの全貌 ― クリスチャン・ベイソンさん

画像出展:「デンマークのスマートシティ」

7章 デンマーク×日本でつくる新しい社会システム

1.日本から学んでいたデンマーク

なぜ、デンマーク・デザインは愛されるのか

・デンマークの企業は従来の「意匠としてのデザイン」から、開発段階で異なる要素を統合する「プロセスとしてのデザイン」を追求するようになり、ここ数年はデザインがビジネスモデルで重要な戦略要素の一つになってきている。政府は、さまざまな社会課題を分野・組織横断的に解決する手段として、デザインの戦略的利用を推進している。

・デンマーク・デザイン協議会が定めたデンマーク・デザインのDNAは10の価値で構成されている。

※ご参考:“DANISH DESIGN DNA"

ご参考:“DANISH DESIGN DNA RESOURCES"

画像出展:「デンマークのスマートシティ」

●日本からの影響

・デンマーク・デザインは1880年代に日本の工芸品や美術品の技術、特徴、職人技を学習し、一度その技法を真似た上で、そこに北欧独自の表現を加えて新しい体系をつくりだしたという経緯がある。これは現代のイノベーション・プロセスとまったく同じである。

・2017年の日本デンマーク外交関係樹立150周年を記念して、2015年から2018年1月までコペンハーゲンのデンマーク・デザインミュージアムにて「Learning from Japan展」が開催された。

・禅の影響も大きいとされている。簡素で装飾のない室内、そこに流れる静謐で調和した空間、枯山水の考え方が、デンマークで花壇などが減少する要因になったとされている。

※ご参考:“【北欧だより8】Design Museum『Learning from Japan』展

2.デンマークと連携する日本の自治体

なぜ、日本の自治体はデンマークに注目するのか

・日本では2014年に「まち・ひと・しごと創生法」(地方創生法)施行後、雇用創出、新産業の育成を行うべく取り組んではいるが地元ならではの特徴を活かしたプロジェクトを生みだせていない状況がある。こうした日本の自治体がデンマークに注目するのは、スマートシティの分野で世界的に高い評価を得ていること、意外にも観光、農業だけではなく、ICT、ロボット、ライフサイエンス分野においても発展し、そして洗練された社会保障制度に基づく高齢者福祉が充実していること、日本の自治体と同程度の面積、人口でそれらを実現している点にある。

3.北欧型システムをローカライズする

フレームワークの輸入で起こるギャップ

日本での顕著な失敗例は、海外で開発されたフレームワークを日本語化してそのまま利用する方法である。他国の異なる理念、制度、システムを導入しても日本の現状とのギャップの大きさにより破綻してしまう。

画像出展:「デンマークのスマートシティ」

4.新たな社会システムの構築

量子コンピュータ×人工知能がつくる未来への準備

・既に膨大なビッグデータは様々な可能性を有している。エクサスケールのスーパーコンピュータは、仮説の立案と検証サイクルを無限に回すことが可能である。これにより、医療、健康、エネルギーなどの問題解決に必要なソリューションを現場で実証せずとも開発することができるようになる。

・デンマークでは2017年に「技術大使」というポジションを創設し、デンマーク、シリコンバレー、北京に拠点を開き、先端技術の動向と社会に与える影響を分析する体制を整えている。ビッグデータ、人工知能、ブロックチェーン、量子コンピュータの開発を踏まえて人間中心型社会をサイバー攻撃から守り、新しいサイバー社会における人権の確立、新技術の倫理規定、さらにはサイバー空間における差別や格差の排除、そしてデジタル課税にも踏み込んだ研究と議論を進めている。

・デンマークは数十年先の社会を見据えて国家ビジョンを定め、小国が国際社会の中で持続的に存在しリーダーシップを発揮する戦略を構築していることを想定すると、このデンマークが考えている30年後の近未来に対する準備は、かなり現実的なアクションである。

感想

デンマークの面積と人口は北海道のおよそ半分。人口密度は北海道の約2倍です。一方、「2023年の世界経済競争力ランキング」の第1位はデンマーク。日本は35位でした。

この差は何か、本書内のデンマークに接すると、次のようなことではないかと思います。

一つは、自国を大切に思っている人、国の将来を真剣に考えている人の割合が、デンマークは日本より圧倒的に多いからだと思います。ここには、納得するまでは決して妥協しないというデンマークの人達の信念を感じます。なお、これは選挙の投票率からも推測できます。

※ご参考:“平均投票率86%、デンマークの若者は呼びかけなくても選挙に行く。「幸福の国」成り立たせる“小さな民主主義

そして、二つ目はリーダーシップです。“改善”は現場、ボトムアップでも十分に進みますが、“改革”は「ヒト・モノ・カネ」を考えることができる立場と実力を兼ね備えた人がリーダーにならないと、ダイナミックな推進は困難です。プロジェクトは迷走します。これが“改善”はできてても“改革”は進まず、35位にまで下がってしまった日本が抱える大きな課題ではないかと思います。なお、このリーダーシップの問題には過剰な忖度など、オープンとは言い難い日本特有の閉鎖性や年功序列的発想が障壁になっているケースも多いように思います。

※ご参考:“リスクよりも責任を恐れる日本人:正しい失敗を許容する社会へ

※ご参考:“人はなぜ失敗を恐れるのか。失敗の正体と正しい生かし方

デンマークのスマートシティ4

著者:中島健祐

発行:2019年12月

出版:学芸出版社

目次は”デンマークのスマートシティ1”を参照ください。

5章 デンマークのスマートシティ

1.デンマークのスマートシティの特徴

デンマークと日本のスマートシティの比較

・国土交通省のスマートシティモデル事業の公募(2018年)や内閣府が国家戦略特区制度(2020年)を活用して2030年頃にスーパーシティを実現するという構想がある。これらは2010年から2015年頃にかけて、各地で展示会が開催され、実証プロジェクトが行われ、その後、ほとんどその言葉は聞かれなくなっていたものである。

・アメリカ、カナダでは大規模なスマートシティ・プロジェクトが継承されている。

・欧州ではスペインで「スマートシティエキスポ世界会議」が毎年開催されている。

※ご参考:“拡大する「スマートシティ」投資、カナダとアメリカで顕著

※ご参考:“都市間協力で脱炭素・持続可能な未来へ

※ご参考:“スマートシティEXPO世界会議

・デンマークと日本の比較で大きく異なるのは2つある。一つはデンマークのスマートシティは定義が広いこと。もう一つはスマートシティをつくることが目的ではなく、都市の課題を解決するための技術やソリューションを開発し、それらを都市に導入することにより課題を解決することが真の目的となる。それにより、出来上がった新しい都市をスマートシティと呼ぶ。

・日本のスマートシティの議論は、スマートグリッドやBEMS(ビルエネルギー管理システム)などのエネルギー・ソリューションに関係するインフラ整備が中心で、都市のインフラ技術を開発して産業を促進させるのが主目的である。

・デンマークでは都市計画、エネルギー政策、環境政策に加えて市民サービスが相互に関連して議論される。スマートシティ構想は必然的に大きなものとなる。持続的な廃棄物管理、交通などのモビリティ、水管理、ビル管理、暖房と冷房、エネルギー、ビッグデータなど、包括的なアプローチとなる。

デンマークでは住民が優先される「人間中心」であるが、日本は「産業中心」である。その参加者は地方自治体、電力会社、IT企業、ゼネコン、ハウスメーカーなどが参加する。デンマークでもこれらの団体は参加するが、これらに加え、大学などの研究機関、建築家、デザイナー、文化人類学者、そして市民がメンバーに加わって進められる。

・『あるデンマークの自治関係者に、どうしてデザイナーや文化人類学者が参加しているのか聞いたところ、彼は「都市は、行政、企業だけでなく、芸術家、音楽家、市民などが活動する場だ、産業だけでなく、こうした多様な人たちの視点を取り入れることが、豊かな都市をつくるために必要だから」と言っていた。』

画像出展:「デンマークのスマートシティ」

デンマークのスマートシティのビジョン

スマートシティは住みやすさと持続可能性、そして繁栄の実現を目的として、革新的なエコシステムに市民の参加を可能とするしくみを構築し、デジタルソリューションを活用する社会である。大切なことは、新しい技術と新しいガバナンスが、ソリューションそのものよりも、市民にとって福祉と持続的な成長の手段になるということである。

この定義で参考になるのは、エコシステムもソリューションも手段であって目的ではなく、目的は市民にとっての福祉、そして持続的成長を明確にしている点である。以下がスマートシティのフレームワークである。

画像出展:「デンマークのスマートシティ」

・ビジョン、目的は「住みやすい都市をつくり、持続可能性と成長を実現する」こと。

・住みやすさを実現する要素であるグリーン項目は6つ、“廃棄物”、“モビリティ”、“水”、“ビルディング”、“冷暖房”、“エネルギー”。

・グリーン項目を実現するための基盤(デジタルソリューション)が、“Date Platform”、“Big Data”、“IoT”、“Security & privacy”である。

・このスマートシティを実現させるためには、必要なシステムやソリューションを開発する必要がある。これを担うのが横断的に機能する“リビングラボ”である。そして、海外都市との連携による経験とノウハウを共有するパートナーシップを構築することを挙げている。

・リビングラボは市民が参加するオープンイノベーションの場であり、新たな技術やサービス開発の過程で行政、企業、市民が共創して主体的に関わりながら課題解決の道筋を探るための活動拠点のことである。国際的に協業しながらこれらの技術を組み込んだ包括的かつ人間中心のフレームワークを構築することに注力している。なぜなら、デジタル化で統合された社会では、一つのソリューションがITシステム、ヘルスケア、セキュリティなど複数の問題を同時に解決する可能性がある一方で、複雑な問題は官民が連携して制度面、技術面、ノウハウ面で組織横断的かつ組織の枠組みを越えた協業が必要となる。

ビッグデータの活用

・デンマークでは2013年から電力セクターが系統データを収集しており、また、2020年までにすべての世帯でスマートメーターの設置が義務づけられているので、今後は電力だけでなく、水、暖房などのインフラ系データが収集され、最終的にはそれらのデータをサービス向上という価値に変え国民に提供される。

2.コペンハーゲンのスマートシティ

・コペンハーゲン市は人口約61万人(2018年)、日本だと千葉県船橋市とほぼ同じ規模である。1990年中頃以降急速に開発が進んでいる。

CPH2025気候プラン

・コペンハーゲン市のスマートシティは、2012年に策定されたエネルギー計画「コペンハーゲン2025気候プラン」と密接に結びつている。

カーボンニュートラルな都市をつくるためには、エネルギー計画だけで達成することは不可能で、交通システム、廃棄物管理、冷暖房システムなど、都市を構成する多様な要素を横断的に解決する必要がある。CPH2025気候プランにはスマートシティに関係するエネルギー消費、エネルギー生産、交通(モビリティ)が含まれている。

・市民はエネルギー消費の削減、電気や熱の燃料費の削減を実践するだけでなく、自宅で使用するエネルギーをグリーン対応にすることで、将来エネルギー価格が上昇した場合でもそのインパクトを最小限にすることができる。そして健康で快適な暮らしを送れることを理解している。

・市民1人1人の行動の積み重ねこそがカーボンニュートラルを達成できる原動力であることを、このプランに関わる人が共有している。

グリーン成長

・デンマークでは「グリーン成長」という言葉がよく使われる。コペンハーゲンでもグリーン成長をCPH2025気候プランの中心に据えており、カーボンニュートラルとグリーン成長を同時に実現することが重要だとしている。日本では環境問題と産業政策は別次元で扱われることが多いが、デンマークではエネルギーと環境問題を解決しながら、その結果として産業を含めた地域の経済的発展を実現するアプローチをとる。

※ご参考:“コペンハーゲンのプランがすごかった!:気候プランとスマートシティ戦略

※ご参考:“サステナブルな都市計画の例 コペンハーゲン”(pdf28枚)

画像出展:「デンマークのスマートシティ」

CPH2025気候プランに挙げられたスマートシティに関するソリューション

①デジタル・インフラストラクチャー

-エネルギー消費のモニタリング(特に建物のエネルギー消費の管理)を行う。

-アクセス可能なオープンなデジタル・インフラストラクチャーを構築する。

-市内の建物のエネルギーと水の消費量をリモートメーターで管理する。

②エネルギーの柔軟な消費とスマートグリッド

-スマートグリッドは複数の再生可能エネルギーの需給調整をフレキシブルに調整する。また、市民、企業、市は再生可能エネルギーを選択して利用することができる。

③スマートビル

-IT技術により、エネルギー効率、柔軟性とエネルギー管理を行う。

④スマートCPH

-コペンハーゲンのCPHと水素のH₂を掛け合わせた水素プロジェクト、風力発電の余剰電力で生産された水素を、交通のエネルギー問題解決のソリューションと考えている。

⑤クルーズ船へのオンショア電気の供給

-クルーズ船はドック係留中にエンジンで発電し電気を供給しているが、陸上で発電したオンショア電気を供給することで環境問題を解決する。これは局所的な小さな問題だが、このような領域にも焦点をあてて取り組んでいる。

最先端の地域熱供給

・地域熱供給は、「CPH2025気候プラン」を達成するための重要なエネルギーシステムである。熱導管を通じて、地域の住宅・施設に熱を送り、暖房・給湯に利用するシステムである。

・デンマークで地域熱供給システムが普及したのは、政府による普及のためのコミットメントと規制プロセスなど具体的な政策の効果が挙げられる。また、洋上風力発電の拡大で、余剰電力が問題となっているが、熱電併合プラントの畜熱槽に熱として貯蔵することで有効活用することができるようになる。

・最近コペンハーゲンで進められているのが地域冷房である。温暖化の影響でデンマークでも30℃近くなることもある。コペンハーゲンでは、海水を利用した冷却システムを利用している。個別の冷房と比較して二酸化炭素の排出量を70%削減し、総コストの40%削減を実現している。

DOLL(デンマーク街灯ラボ)と都市照明

LEDを利用した高度な照明システム

-コペンハーゲンはスマートシティを構築する上でLEDを利用した高度な照明システムに力をいれている。

-街灯柱はセンサーや通信インフラを設置すると、広域に対応したスマートシティインフラになる。

・グリーンエコノミーを推進するゲート21

画像出展:「デンマークのスマートシティ」

-ゲート21(Gate21)はスマートインフラを推進するために、コペンハーゲンの各自治体、企業、研究機関が連携した非営利のパートナー組織であり、まさに産官学連携のプロジェクトである。

ゲート21のミッションは、リビングラボでテストしたり、現場での実証プロジェクトを通じてエネルギーや資源効率化に関係するソリューションを開発したりすることである。注力するのは次の6領域。

1)建物と都市

2)交通

3)エネルギー

4)循環経済と資源

5)グリーン成長

6)スマートシティ

そして、プロジェクトを通じて、グリーンエコノミーへの移行を促進する事業機会を見出すための、新技術、サービス、プラットフォーム、ツール、プロセス、スキルを開発して支援することを目指している。

・DOLL(デンマーク街灯ラボ)

-DOLLはDenmark Outdoor Lighting Lab)は、“リビングラボ”(市民が参加するオープンイノベーションの場であり、新たな技術やサービス開発の過程で行政、企業、市民が共創して主体的に関わりながら課題解決の道筋を探るための活動拠点)の一つ。スマートシティで新しい技術やソリューションを開発するためのプラットフォームとして、2013年にコペンハーゲン近くアルバーツルンド市に設立された。

DOLLでは、都市照明に関する世界中の先端技術とソリューションを見ることができる。

-DOLLには世界の照明ベンダーやIT企業が参加しているので、技術や都市照明の各ソリューションの比較検討もできるので、DOLLに行けば多くの課題を解決できる。

-DOLL(リビングラボ:活動拠点)のようなプラットフォームは、デンマークが得意とするもので、少ない予算、人材、資源を有効活用するために特定の場所に必要な資源を集積させて、世界でもトップクラスの技術開発、実証、社会実装を行う手法である。

-DOLLは、DOLLリビングラボ、DOLLクオリティラボ、DOLLバーチャルラボという、3つの研究所から構成されている。

・デジタルインフラ

-実証用にWiFi、LoRa、WAN、Sigfox、UNB、NB—IoT、5Gなどさまざまなワイヤレスネットワークを完備しており、都市のネットワーク環境に合わせたデジタルインフラを選定して実証することができる。

※ご参考:“コペンハーゲン首都圏のスマート都市照明

フィンテック

・キャッシュレス化が当たり前の社会

-フィンテック(FinTech)はデンマークでもコペンハーゲンを中心に盛り上がりを見せている。

-フィンテックは米国、シンガポールなどが力を入れており、欧州ではイギリスが国際的なフィンテックセンターとしての役割を担うべく台頭している。

コペンハーゲンフィンテック

-「コペンハーゲン・フィンテック」の目的は、フィンテックのエコシステムを展開し、グローバルな金融サービス産業で主導的なフィンテックラボを形成すること、そしてデンマークの経済成長につなげることである。

-フィンテックの事業化、既存の金融機関、公的機関そして大学などの研究機関がビジョンを共有し連携するエコシステムを形成している。

※ご参考:“Copenhagen Fintech

画像出展:「デンマークのスマートシティ」

スマートシティの実験場、ノーハウン

・2005年、デンマーク政府とコペンハーゲン市はノーハウン地区の再開発で合意した。最終的に4万人が暮らす現代的な居住地区とビジネス地区が共存する、コペンハーゲンの新たなウォーターフロントとなる予定である。

※ご参考:“Cobe Nordhavn

・ノーハウン(Nordhavn)のビジョン

ノーハウンのビジョンは、スマートシティのビジョンと同期している。ビジョンは6つに分かれ、地域の持続可能性に加えて、多様性、快適性、人間中心の考え方が組み込まれていく。

①環境に配慮した都市

②活気に満ちた都市

③すべての人のための都市

④水の都市

⑤ダイナミックな都市

⑥グリーン交通の都市

・ノーハウンの開発戦略

-ノーハウンをスマートシティにするための開発戦略は6つのテーマに分かれている。

画像出展:「デンマークのスマートシティ」

①島と運河

-イタリアのヴェネチアをイメージしたスマートシティ。

②アイデンティティと歴史

-ノーハウンの歴史(150年に渡る歴史と100年以上の建物)と港湾地区の特徴を考慮した開発。

③5分間都市

-徒歩か自転車で行けるコンパクトで高齢者に優しい街を目指している。

④ブルー&グリーンシティ

-ノーハウンでは市民が水と直接触れ合うことを重視した設計になっている。これは日本との大きな違いである。ここには自己責任の考えた方が浸透しているデンマークならではのアプローチである。

⑤二酸化炭素にフレンドリーな都市

-再生可能エネルギーによる発電、熱供給システムでの暖房、海水を利用した冷房システム、廃棄物の再利用、雨水の再利用はゲリラ豪雨対策を兼ねている。

⑥インテリジェント・グリッド

-これはノーハウンの小島をマス目のように分割し、柔軟なビルディングゾーンとして設計する。これにより、マス目単位の変更が可能で、大規模な全体設計を避けることができる。

3.オーフスのスマートシティ

・オーフス市は人口34万人(2018年)、デンマークで2番目に大きな都市である。群馬県前橋市とほぼ同じ大きさ。

・オーフスでもコペンハーゲンと競うようにスマートシティを推進している。

・オーフスでは2030年にカーボンニュートラルの都市をつくる。オーフスのスマートシティの特徴は、伝統や文化を尊重した取り組み、ヘルスケアや福祉に関するプロジェクトもスマートシティに含まれている。

スマートオフィス

・スマートオーフスのビジョンと目的

ビジョンは、パートナーシップに基づいた都市開発のための北欧モデルを国際的に主導すること。

-デジタル技術の功罪を理解した上で、持続的成長とイノベーションを実現する。そして、異なる利害関係者を巻き込みながら社会に価値をもたらし、社会、環境そして経済の課題を解決するというものである。

※ご参考:“スマートオーフス

4.オーデンセのスマートシティ

・オーデンセ市は人口約17万人(2016年)、デンマーク第三の都市で自治体では立川市や鎌倉市とほぼ同じ規模である。デンマークでも最も古い都市の一つで、アンデルセン生誕の地として知られている。

-オーデンセ市は、エネルギーや交通などに注力するコペンハーゲン、文化を取り込んだスマートシティを標榜するオーフスと差別化するため、オーデンセが得意とする領域、ロボット、ドローン、ヘルスケア(特に福祉技術)に焦点を当てたプロモーションを行っている。

オーデンセがユニークなのは、福祉技術を含めたヘルスケア・ソリューションを実証実験できるリビングラボ「コーラボ」をオーデンセ・ロボティクスが入るセンター内に設置していることである。

-コーラボには自宅、かかりつけ医、病院、介護施設のモックアップが設置されており、デジタル機器を開発する際、異なる環境でも一貫性のあるユーザーインタフェースをデザインしたり、医者、介護士、作業療法士などが連携して患者に対応する場合に最適な作業プロセスを検証したりすることができる。また、病院の手術室や病室も再現されており、実際の執刀医が立ち会い、手術の模擬テストを通じて医療機器やソリューションの評価を行うことができる。

※ご参考:“Invest in Odense

※ご参考:“Odense robotics

デンマークのスマートシティ3

著者:中島健祐

発行:2019年12月

出版:学芸出版社

目次は”デンマークのスマートシティ1”を参照ください。

3章 市民がつくるオープンガバナンス

1.市民が積極的に政治に参加する北欧型民主主義

コンセンサス社会が実現する民主主義

・イギリスのエコノミスト社の調査部門であるエコノミスト・インテリジェンス・ユニットが2006年から民主主義指数なるものを発表している。

・デンマークを含む上位国と日本の差は、「選挙プロセスと多元性」「政治的な参画」が大きい。

・日本では、ビジネスの打ち合わせや会食中に政治や宗教の話題は避けられるが、デンマークでは政治の話はご普通であり、選挙が近づくとかなり踏み込んだ議論が行われる。これは自国に限らない。日本の選挙や政治について質問されることは珍しくない。

※ご参考:2021年世界の政治民主化度 国別ランキング (注)出展・参照:“世界銀行”

デンマークの民主主義の歴史

・デンマークは1849年に君主制度が廃止され、現在のデンマーク王国憲法が制定された。市民が王政に終止符を打ち、民主主義を勝ち取ったという経緯があり、これがデンマークの民主主義の基盤となっている。

デンマーク型の民主主義とは、「情報をもとに自分で分析し、公平に準備された政策決定プロセスに参加し、自ら決断する。そして自己責任の原則で最終的な結果を受け入れる」。

高い税負担が政治参加を促す

税負担が高いため、国民は税金が公平公正に使われているか政治を厳しくチェックする。

※ご参考:“国民負担負担率の国債比較(OECD加盟36カ国) 出展:財務省主計局

上記を見ると、デンマークは3位(65.9%)です。日本は22位、英国は25位、スウェーデンは12位です。

「高齢化を背景に大きく伸びて、欧州諸国との差は縮小」とのことです。 

画像出展:「ニッセイ基礎研究所

2020年 

日本:47.9%

英国:46.0%

スウェーデン:54.5%

 コンセンサスを育む教育

・北欧型民主主義の特徴である「コンセンサス社会」は、子供からの教育も大きな役割を担っている。

デンマークの基礎教育は0~10学年まであり、基礎学力の習得だけでなく、自立した人間をつくるために自分の考えを言葉で表現し討論する授業や、異なる考え方や意見を尊重し、トラブルを解決しながらコミュニケーション力を伸ばす授業もある。そして言葉、文化、地域の異なるバックグラウンドを持つ生徒たちの多様な意見をまとめて自分たちなりの合意、つまりコンセンサスをつくりあげることに力を入れている。

・『友人のデンマーク人によると、デンマークでは選挙が近づくと憂鬱になる家庭があるらしい。デンマークでは子供が中学生になると、自分の意見を持ち、社会のしくみも理解して一筋ではいかなくなることから、「子供がモンスターになった」と言われたりする。そして選挙が近づくと、そのモンスター化した子供が社会の授業で、政治家の過去のマニフェストや選挙公約をどれだけ実現できたか調べたりする。そして、次期選挙の公約を政党ごとに表でまとめ比較検討して、自分たちの地域をどのようにしたいかについて議論をする。当然、子供たちは親に自分たちの意見を伝え、親の意見を求める。その時に子供の意見に対してどう考えるのかを回答できないと、親の権威が失墜してしまう。親は、仕事や家事が終わった夜、子供が授業で行ったように政治家の経歴、実績、政治信条を調べ、マニュフェストを確認し、政治家としての実行能力なども確かめて、子供と同じ目線で議論できるように準備しなければならない。ある日、友人の目が赤いのでどうしたのかと聞くと、夜中に政党の公約を調べていたので寝不足だと笑っていた。

こうした政治参加は、選挙の投票行動に反映され、より強固な民主主義の基盤がつくられる。』

2.市民生活に溶け込む電子政府

デジタル国家のトップランナー

・EUはデジタル化について毎年、「デジタル経済と社会指数(DESI)」という調査を行っており、デンマークは2014~2018年、5年連続で1位になった。(2022年は僅差の2位。1位はフィンランド) 

画像出展:「欧州連合

1位:FI(フィンランド) 

2位:DK(デンマーク)

・「デジタル経済と社会指数」は5つの評価項目でランキングしている。「ブロードバンドの接続性」「デジタルスキルを含めた人的資本」「インターネットサービスの利活用」「デジタル技術の統合」「デジタル公共サービス」である。

デンマークのデジタル化で最も特徴的なのは「デジタル技術の統合」の点で、他国より秀でている。つまり、政府の公共サービスの電子化だけでなく、デジタル技術の統合により、都市を構成しているエネルギー、交通、農業、医療、福祉、教育に至るまで、進展度合いに違いはあるにせよ、基本的に統合されたデジタル化が展開されている。

画像出展:「デンマークのスマートシティ」

 

画像出展:「デンマークのスマートシティ」

 

質の高い社会サービスを実現するデジタル化

・デンマークのデジタル技術の統合に優れているのは、社会制度とデジタル化に関する歴史と政策を見る必要がある。

・1910年代から福祉国家として制度の充実を図ってきた。

・1950年代の黄金期を経て、1990年以降はフレキュシリティなど積極的な労働市場政策に基づく福祉国家の再編を行ってきた。そして、グローバル化、高齢化に伴う労働人口の減少に対応し、福祉サービスの水準を維持するためにさまざまな改革を行ってきた。また、インターネットの普及に伴い、デジタル技術の積極的な利用により、労働不足に伴う公的機関の効率性向上とサービス水準の高度化を同時に行うことを検討されてきた。

市民生活に溶け込む電子政府

・デンマークでは2001年から中央政府、広域自治体(レギオン)、基礎自治体(コムーネ)との連携や複数のデジタル化戦略を経て進められてきた。

・2000年初頭の電子署名の導入により、市民は公的機関と電子メールでやりとりができるようになった。その後、税金還付や年金受給のための公共決済口座であるNemKontoが開始され、同時期には先進的な医療ポータルであるsundhed.dk、そして市民に電子政府の利便性を提供する市民ポータルのborger.dkが2007年にサービス提供を開始した。そして現在(2019年)は、スマートフォンなどモバイル端末の普及によって2007年に導入されたNemID(新電子署名)に代わる、電子政府の新アクセスIDの導入を進めている。

・デンマークの電子政府は、医療ポータルsundhed.dkと市民ポータルborger.dkの導入が鍵だった。

・市民ポータルborger.dkは、2000年代に構築された、官庁ごとに異なる行政システムをセルフサービス型の一本化されたシステムとして導入された。このポータルが優れているのは、市民が生活に必要な行政情報のすべてをこのポータルから取得することができ、教育、福祉を含めた多様な申請手続きを行えることである。また、マイページにアクセスすると住居・転居、税金、年金、教育などに関する情報をいつでも閲覧することができる。つまり、このborger.dkを活用すれば、行政機関の窓内に行くことはほとんどなくなる。

画像出展:「デンマークのスマートシティ」

3.高度なサービスを実現するオープンガバメント

透明性の高い政府の実現

・デンマークでは特にオープンガバメントが進んでいる。「オープンガバメント・パートナーシップ」とは、市民と政府の協力のもと、政府の透明性を向上させ、市民参加によりエンパワーメントを図り、新技術とイノベーションを活用してより良い政府をつくることを目的とした多国間イニシアチブである。

オープンデータ・デンマーク

・デンマークの特徴的な取り組みは「オープンデータ・デンマーク」である。政府が民間に頼ることなく全面手に社会福祉サービスを担っているため、それ関わるデータ量は膨大である(ビッグデータ)。日本のマイナンバーカードに相当するCRPナンバーは1968年に導入された。

オープンデータ・デンマークは、広域自治体や基礎自治体が管理しており、都市開発や社会課題の解決において公的にデータを自由に活用できる環境を整えることを目的に整備された。

・2018年5月に施行された欧州の個人データ保護に関する法律であるGDPR(EU一般データ保護規則)の関係で、デンマークでも取り扱いは厳しくなっているが、オープンデータ・デンマークから公的オープンデータを収集することができる。

※ご参考:“デンマークはビッグデータの収集と開示により都市の成長と確信を促進

遠隔医療でのオープンデータの活用

・遠隔医療はオープンデータの活用が期待されているプロジェクトである。

・デンマークではEUと連携する形で遠隔医療の実証実験を続けてきた。

・遠隔医療のニーズは、市民とその家族が主体的に治療に関わりたいとの要望が強まっている。

・高齢化が進む中で高齢者の治療と慢性疾患患者の増加が見込まれている。

・今後の医療コストが増加すると予想されている。

・特に期待されているのは、妊婦の合併症とCOPD(慢性閉塞性肺疾患)に対する治療である。具体的には前者は合併症のリスクを軽減すること、後者は治療が長期間に及ぶため。

・デンマークは人口密度が低く、地域の病院数も限られている。病院側も通院患者が減れば病院の効率が上がり、より重症患者や緊急の患者に対応することができるようになる。

・この遠隔医療は実証実験を経てサービスの検証を行った結果、医療サービスとしての品質、安全性、経済性とともに十分運用可能と結論づけられた。

デンマークのオープンガバメントの取り組みは、オープンデータ一つとってみても、単にデータの開示による公共サービスの透明性の確保だけでなく、市民生活を向上させるサービスの開発と実社会への導入という観点が含まれていることが特徴である。

4.サムソン島の住民によるガバナンス

・再生可能エネルギー100%の島として知られているサムソ島は、首都コペンハーゲンがあるシェラン島の西に位置しており、北海道の奥尻島と同じくらいの島である。

・夏には多くの観光客が訪れるこの島は、エネルギー企業などの関係者の視察が増え、再生可能エネルギーのショーケースのようになっている。最近は、こうした視察やエネルギープロジェクトに関係した雇用創出で地域活性化に大きく貢献している。

サムソ島の成功の要因は、地域の共創の理念と、住民を導いたサムソ・エネルギー・アカデミー代表であるソーレン・ハーマーセンを中心とした創造的リーダーシップにある。彼らは地域社会、特に住民の参画に力を入れ、風力発電の技術が分からない住民の理解を得るために、説明会やワークショップを何年にもわたって実施し、住民の意向に沿った開発計画を策定した。

最近では、サムソ島が再生可能エネルギー100%の島であることより、いかに異なる考え方を有する住民をまとめて一つの方向性に導くことができたのかに関心を持つ視察者が増えている。

・ハーマーセンの元には多くの質問や反対意見が届いた。それらに対し、3年かけて一軒一軒を回り会話をしながら問題を話し合うことで、少しずつ島民の理解を得られるようになった。

・2007年のカーボンニュートラルで再生可能エネルギー100%の島を達成した後も、新たな目標である2030年までに脱化石燃料を目指す。「サムソ2.0」を策定し、将来は循環型社会を目指す「サムソ3.0」を掲げている。

・「パイオニアガイド」はノウハウをまとめたガイドであるが、地域コミュニティが新しいシステムを導入する際の構造化されたアプローチ方法であり、サムソ島のホームページで開示し、必要に応じて出張しセミナーの開催なども行っている。

※ご参考:“コミュニティパワーで100%自然エネルギーの島から次のステップへ:デンマーク、サムソ(市)島

※ご参考:“世界で一番エコな島~サムソ島” (YouTube 5分53秒)

4章 クリエイティブ産業のエコシステム

1.デンマーク企業の特徴

日本と比べて圧倒的に小さなデンマーク企業が厳しい競争の中で生き残ることができる鍵は次の6つである。

①革新的かつクリエイティブは技術、ソリューション、デザインを追求する。

②国内市場を目指すのではなく、いきなりグローバル市場に参入する。

③大手企業が見逃しているニッチ市場を攻める。

④ニッチ市場でナンバーワンを目指す。

⑤収益のうち高い比率を研究開発に回す。

⑥研究開発を通じて、さらにクリエイティブな製品やソリューションを開発し、他社の追随を許さない。

このような戦略が採れるのも、優秀な人材がいてこそである。デンマークの企業は経営幹部も含めて創造性に長けた社員の採用に力を入れているところほど成功している確率が高い。

・デンマークでは大学発ベンチャーにも注力しており、研究室からそのまま起業して成功するなど研究開発型の企業が多いことも特徴である。

画像出展:「デンマークのスマートシティ」

2.世界で活躍するクリエイティブなグローバル企業

アーステッド:石油・天然ガスから再生可能エネルギー企業へ

・環境エネルギー分野では洋上風力発電のアーステッド社がある。アーステッドはもともと国営企業であり、現在でも株式の過半数をデンマーク政府が保有する。

ノボノルディスク:糖尿病治療薬のリーディングカンパニー

・1923年に設立されたノルディスク・インスリン研究所と1925年に設立されたノボ・テラピューティスク研究所がインスリン製剤の生産を始め、業界トップ2社となった両社がさらなる成長と発展を目指して1989年にできたのがノボノルディスク社である。その後急成長し、糖尿病、血友病、成長ホルモン治療で世界的企業となっている。

レゴ:世界の子供の創造力を育てる玩具メーカー

・1932年、オーレ・キアク・クリスチャンによってデンマークの小さな街ビルンで設立された、レゴの経営哲学は「質の良い遊びは子供の人生を豊かにする」というもので、レゴの意味はデンマーク語で「Leg godt(よく遊べ)」の略語である。

3.デジタル成長戦略と連携して進展するIT産業

デジタル成長戦略

2018年1月に「デジタル成長戦略」を策定した。骨子は次の3つである。

①デンマークのビジネスがデジタル技術の活用の点において欧州でベストになること、特に中小企業が先端デジタル技術を利用できるように政府がその推進体制を保証する。

②デジタル・トランスフォーメーションを実現するために、政府として最高の環境を整える、特に新しいビジネスモデルや投資を引きつけるための迅速な規制緩和、そしてサイバーセキュリティとデータ処理体制を強化する。

③すべてのデンマーク人がデジタル・トランスフォーメーションに対応し、EUで最もデジタル化に準備をした国民となる。そのために適切なツールと教育を提供し将来の労働市場に備える。

そして、これらの戦略を実行するための6つの領域を定めている。

①デジタル化による成長環境を強化するための「デジタル・ハブ・デンマーク」を設置

②中小企業のデジタル化対応強化

③すべてのデンマーク人がデジタルスキルを身につける

④貿易と産業の成長にビッグデータを活用

⑤貿易と産業の迅速な規制緩和

⑥企業におけるサイバーセキュリティを強化

この中でも産業のエコシステムに関して注目に値するのは、①デジタル・ハブ・デンマーク、②中小企業のデジタル化対応、そして④ビッグデータの活用である。

デジタル・ハブ・デンマーク

・「デジタル・ハブ・デンマーク」は、産業・ビジネス・財務省が推進する、デジタル化で強力な成長を実現するためのフレームワークである。意外だが、デンマークは人工知能(AI)やビッグデータの活用では他国に遅れをとっていると認識されており、具体的なアクションにつなげている。

中小企業向けデジタル化対応

・中小企業のデジタル化は大手企業に比べると遅れており、デジタル技術の活用により複数の産業で事業開発が進展できると考えている。

ビッグデータの活用

・データ活用で重視しているのは、製造業、小売、エネルギー産業、保険、交通セクターにおけるデータの収集と分析に基づいた企業経営の最適化である。

・デンマークは小国ゆえに日本のNEC、富士通、日立のような広範な分野に対応できる総合IT企業はない。そのため、多くはアプリケーションを開発するソフトウェア企業など限られた分野に特化した企業が多い。

4.スタートアップ企業と支援体制

北欧のスタートアップシーン

・北欧でスタートアップといえばスウェーデン(特にストックホルム)が有名である。北欧諸国の中で資金面、エコシステムで最も充実したフレームワークを整えている。一方、デンマークもここ数年でスタートアップに対する支援が充実してきており、スウェーデンに続く北欧のハブになりつつある。

スタートアップ・デンマーク

・「スタートアップ・デンマーク」は、産業・ビジネス・財務省と移民・統合・住宅省が運営しており、国が主導している起業支援機関である。

コペンハーゲンのスタートアップ・プログラム

・自治体の中では、特にコペンハーゲン市がスタートアップ・プログラムに注力している。

5.新北欧料理とノマノミクス

・「noma(ノーマ)」は世界的に有名なレストランである。ノーマを創業したシェフたちは、調理で食材が変化するしくみを科学的観点から分析して、調理法の改善、新たな食材の活用等を開発する分子ガストロノミー、顧客の五感を刺激する見せ方、美しい店舗デザイン等によって「新北欧料理」というジャンルを構築した。

デンマークのスマートシティ2

著者:中島健祐

発行:2019年12月

出版:学芸出版社

目次は”デンマークのスマートシティ1”を参照ください。

3.共生と共創の精神

資源と産業のない貧しい国

・デンマークは1950年以前、北ヨーロッパの田舎で、天然資源は少なく、土壌も痩せて農業には適さないなど、かなり過酷な条件の揃った国であった。寒さと飢えで亡くなる人々も多く、アンデルセンのマッチ売りの少女さながらの現実が19世紀にはあった。デンマークで共生と共創の精神が根づいているのは、こうした厳しい環境と関係している。

画像出展:「マッチ売りの少女

 ・現在のデンマークは小資源国であっても十分大国と渡りあえることを証明している。ソフトウェアや人工知能、量子コンピュータの開発で、物量ではアメリカや中国には適わないが、質の面では世界トップクラスの水準となっており、マイクロソフトは2017年に量子コンピュータの研究センターをコペンハーゲン大学のニールス・ボーア研究所に開設している。

画像出展:「デンマークのスマートシティ」

ニールス・ボーア研究所 

 ・デンマークは既に再生可能エネルギー大国である。既に国内の消費電力のうち約40%が風力発電により賄われ、2050年には脱化石燃料の国家を宣言している。

※ご参考:“デンマーク、2050年までに化石燃料脱却を目指す「エネルギー戦略2050」を発表

・デンマークの国教は福音ルーテル派だが、日常生活と宗教は密接に結びついておらず、日曜日に礼拝に行く慣習は特にない。宗教より「ヤンテの掟」のように、倫理や道徳の教育がデンマーク人の精神に根づいている。

北欧の気候風土とヒュッゲ

・デンマークは北緯55度に位置し、北海道の稚内(北緯45度)より北に位置してるが、暖流であるメキシコ湾流の影響で高緯度の割に気候は穏やかで、寒い日でも氷点下10℃程である。また、比較的四季もはっきりしている。

・夏の日没は午後10時、冬は日の出が午前8時半過ぎ、日没は午後4時前なので、通勤、通学時は日が落ちて真っ暗である。

・こうした気候風土の中で育まれた文化が「ヒュッゲ」である。これは日本では正月に家族や親戚が集まり、お節料理やお酒を飲んで、ゆっくりとくつろぐ時間のようなものである。

画像出展:「デンマークのスマートシティ」

 4.課題解決力を伸ばす教育

教育システムのしくみ

・デンマークは先進国の中で教育費支出が高い国の一つである。

・デンマークにおける教育の目的は、「人格形成を平等に行い、社会の一員として責任を持ち義務を遂行し社会に貢献できる能力を育むこと」とされている。また、生徒の社会的背景、特に経済的かつ身体的状況に配慮し、差別をなくして1人1人の個性を尊重し、個々の能力を伸ばすことに力を入れている。

※ご参考:“世界の公的教育費対GDP比率 国別ランキング・推移” (先進国以外も対象)

 ・デンマーク:21位

 ・日本:121位

教えるのではなく、導く教育

・重視しているのは知識より、社会を作る上で必要な人格形成、人間性の向上など、日本では大人になってから考え始めるような人生哲学に力を入れている。これはニコライ・F・S・グルントヴィの思想が大きく影響している。学ぶ者には学ぶことへの内側から湧き出る動機が必要であるとしている教師は生徒との自由な対話によって、若者に気づきを与える教育が大切であるとした

直観力の育成

人間力育成に加えて、課題解決力の育成にも力を入れている。これには問題の本質を見極めて効率的にかつ公平に、最短で解決策を見出す教育に保育園から取り組んでいる。

・「森の幼稚園」では、自然と触れ合うことは人間としての感性と直感力を育て、国際的に重視されているSTEM教育(科学・技術・工学・数学教育の総称)の基礎となる自分で考え理解する力を養うことになる。

『全ての子ども達にたっぷりの愛と自然とのふれあいを。子育てを支え合い、喜びに満ちあふれた社会の実現を目指します。子ども達よ、命の根っこを輝かそう。森で、海で、里で、この空の下で。』

 問題解決力の育成

問題解決力は、対話によるコミュニケーション力と、自ら目標をたて実行する自立力がベースになっている。

・コミュニケーション力を養う教育としては、中学生の生徒同士で議論してコンセンサスを得る能力を磨く機会がたくさんある。そのために必要なことは、異なる価値観を持つ仲間と共同作業を行う力、得られたコンセンサスを皆の前で発表し共感を得る力、必要な情報を自分で収集できる力で、その方法を学習していく。

・デンマーク人は学校でも家庭でも生まれた時から1人の個人として尊重され、自分の考えで物事を決めることを求められる。こうした特性は小学生の間に培われるが、中学生になると個人と社会との関りを学び、また複雑な関係を調和されることが問われる。

 5.働きやすい環境

非学歴社会

・デンマークでは学歴を問われることはない。そもそもデンマークでは日本のように一斉に行われる大学入試や就職試験はない。大学を卒業するのも、社会に出るのも人によってバラバラで、各個人の価値観、人生計画に応じて組み立てられる。

企業においても日本の会社に見られるような、有望な部下を意図的に引き上げることはなく、ポストは広く内外に募集されるので、派閥がつくられることもない。個の自立を重視してきたデンマークでは、日本のように同質性の社会システムにみられる閉鎖的な決定プロセスはなく、フラットで公平なしくみが息づいている。

生産性の高い働き方

・デンマークでは先進国の中でも労働時間の少ない国の一つである。一般的には8時に出社し16時には退社する。大抵の職場でフレックス制度が導入されているので、自由度がとても高い。

・デンマーク人は家庭で過ごす時間を大切にしているので、仕事を効率的に仕上げて自宅に帰る人が一般的である。デンマークの企業で毎日18時まで職場に残っていると、能力のない人材と思われてしまうだろう。

・労働時間の縛りはないが、仕事のパフォーマンスが厳しく問われる。与えられた目標を達成することは当たり前で、職種によってはそこに付加価値と革新性が加えられているかが評価のポイントになる。パフォーマンスが低い者はすぐに解雇されることもある。

会議では、議題を事前に設定し参加者全員が意見を述べる。基本的に持ち帰ることはしないで、参加している者のコンセンサスをまとめてその場で意思決定をすることが求められる。参加しているものが決定権を持っているので、たとえ役員の代理で新入社員が参加して最終決定をした場合でも、その社員の決断が尊重される。

フレキュシリティ

「フレキュシリティ」とは、「flexibility」(柔軟性)と「security」(安全性)を組み合わせた造語で、柔軟な労働マーケットと労働に対する社会保障を組み合わせた政策のことである。

・デンマークでは仕事の成果が出ないとすぐに解雇されることもある。しかし、労働者が慌てることがないのは、このフレキュシリティ政策があることも背景の一因である。

・フレキュシリティモデルは、①労働市場の柔軟性、②所得補償、③効果的な労働市場政策を組み合わせた形でゴールデントライアングルとも呼ばれている。

※ご参考:“フレキシキュリティとは?意味や効果、デンマークやオランダの事例を詳しく解説

画像出展:「デンマークのスマートシティ」

 

・労働市場の柔軟性は、雇用主が雇用と解雇をやりやすくすることで、労働力の構成を柔軟に変更でき、経済情勢や産業構造の変化に迅速に対応した組織を再構築することができる。従って、デンマークでは産業としては衰退しているにもかかわらず、雇用を守るために存続するゾンビ企業はほとんどない。

・簡単に解雇されるリスクがあるということは労働者にとっては不安要因である。そこで、失業者には最長2年間の所得補償が失業保険ファンドから支給される。特に低所得者層への支援は厚く、最大で前職給与の90%が支給される。

・効果的な労働市場政策は、社会保障制度の中でも特に重要な位置づけにあり、本政策に関する政府の支出はGDP比3.7%(2012年の実績値)にも達している。目的は、柔軟な労働市場が機能するための施策を打つことであり、失業者の再教育、転職の支援など多岐にわたっている。この失業者の再教育システムは実にうまく機能している。

・再教育は進捗状況を含めてかなり細かくかつ定時的にレポートを提出することが求められ、内容も逐次精査される。このため多くの人は再教育よりも企業で働くことを望むことになる。

デンマークの格差を是正するシステムは、単に手厚い支援を提供するだけでなく、国民の税金を使うだけの義務と厳しさが緻密に組み込まれていることが、うまく機能している理由の一つである。

6.格差がないからこそ起こること

高齢者は尊敬されない

・首相や大臣経験者、大企業の社長でも引退してしまえばただの高齢者になる。日本のように引退後に名誉顧問になり会社に残ることもなければ、財界活動に参加して過去の栄光で影響力を及ぼすこともない。デンマークでは高齢者という理由では特別尊敬もされない。

女性の方が強い

・女性の進出が進む社会では、生活するうえで男性に依存する必要がないので離婚がかなり多い。

・デンマーク人の結婚に至るパターンは、女性が男性をつかまえて、まず同棲しお互いの相性が良いと結婚するが、離婚する場合は女性が男性を捨てることが多い。

難民増加による右翼化の動き

・デンマークは移民を受け入れてきたが、最近は右寄りの論調が増えてきている。中東からの移民増加の影響もあり、人口に占める移民の比率は12.39%(2020年)になっている。

・人々の間では移民は仕事をしないで北欧の福祉制度にタダ乗りしているとの不満が高まっている。

北欧諸国は民主主義、平等、博愛という理念のもとに福祉政策を進めてきたが、移民の増加と社会保障支出の問題が複雑に絡みあい、今のところすべての利害関係者を納得させる解決策を見出せてない。将来的に格差のない社会システムを維持する上で、デンマークも大きな課題を抱えている。

2章 サステイナブルな都市デザイン

1.2050年に再生可能エネルギー100%の社会を実現

脱炭素化が加速する要因

・2050年までに世界で保有している化石燃料の80%を燃やせないというカーボンニュートラルが大きく関係している。

再生可能エネルギーの発電コストが大幅に低下している。2010年~2017年の7年間で太陽光は73%、陸上風力は23%低下した。洋上発電も欧州のセントラル方式による入札、開発プロジェクトの大型化、風力発電の大型化、技術力の強化などにより大幅なコストの低下と開発リスクの低減を実現している。

エネルギー戦略2050の策定

・デンマークは2011年、2050年までに化石燃料からの完全な脱却を目指す「エネルギー戦略2050(Energy Strategy 2050)」を公表した。

・エネルギー戦略の背景として、近い将来、アジアを中心とした新興国の経済発展に伴うエネルギー需要の増加から、石油や石炭などの化石燃料の価格が上昇することが見込まれていたことがある。資源のないデンマークでは価格高騰や自国では制御が難しい外部リスクを取り除く必要があった。

社会に実装するための緻密なデザイン

・エネルギー戦略2050について、小国ゆえに策定できたのだろうとの見方があるが、たとえ小規模でも国家が方向性を大転換し、新しいイニシアチブを発揮することは容易なことではない。そのために、数年かけて政治家、行政関係者、研究者が戦略の実行可能性について検討を重ねてきた。

・エネルギー戦略2050は、①再生可能エネルギー、②エネルギー効率、③電化、④研究開発と実証、の4つから構成されており、それぞれ詳細な分析に基づく行動計画が定められている。また、戦略を確実に実行するための原則としくみが組み込まれている。

1970年代からのエネルギー政策

・デンマークでは1973年の第一次オイルショックをきっかけに、1985年に原子力発電に依存しないエネルギー計画を国会で決議し、風力発電による再生可能エネルギーを導入するなど段階的に取り組んできた。

2.サーキュラーエコノミー(循環型経済)の推進

EUで加速する循環型経済

・サーキュラ―エコノミー(循環型経済)とはリサイクルや産業廃棄物削減を狙った施策であるが、デンマークはEUと連携して積極的な取り組みを行っている。

デンマークのポテンシャル

・サーキュラ―エコノミーの定義は次のようなものである。

「サーキュラーエコノミーは、デザインにより再生、再利用するしくみであり、製品とそれを構成する部品、原材料を技術的なものと生物学的なサイクルとに区別しながら、その価値と利用可能性を最も高い水準で維持すること」

民間主導のビジネスモデル

・デンマークでは、民間企業が政府を引っ張る形で積極的にサーキュラーエコノミーに対応したビジネスを展開している。サーキュラーエコノミーを収益力もあり、持続可能な解決策にするためには、製品のデザイン段階からサーキュラーエコノミーの原則を組み込んだアプローチが重要であり、若手のデザイナーを中心にサーキュラーデザインの活動が進んでいる。

※ご参考:“DANSK SYMBIOCENTER

※ご参考:“サーキュラーエコノミーとは

画像出展:「デンマークのスマートシティ」

 

3.世界有数の自転車都市

コペンハーゲンの自転車政策

・デンマークはオランダと並んで自転車大国として知られている。コペンハーゲンの市民の通勤・通学の41%(2017年)が自転車を利用している。

・コペンハーゲン市は技術・環境市長が主導し、サイクリストにとって世界で最も優れた都市になることを目標にしている。

自転車スーパーハイウエイの整備

・総延長467㎞(2018年時点)の「自転車スーパーハイウエイ」が整備された。コペンハーゲンでは5㎞未満の移動では60%の市民が自転車を利用するが、5㎞を超えた途端にその比率は20%以下に下がる。この数値を引き上げるためハイウエイの新線が追加された。

※ご参考:“グリーンな社会目指すデンマーク 自転車ハイウェイとIoT

※ご参考:“海外事例研究 | コペンハーゲンのサイクリング都市化における交通データ利活用

画像出展:「デンマークのスマートシティ」

 

自転車走行速度を統一するグリーンウェーブ

・高性能な信号機を導入し、時速20㎞で走行すれば赤信号で止められることはない。これにより、子供を乗せている母親も高齢者も安心して自転車を利用できる。

多面的な包括的アプローチ

自転車政策は環境エネルギー、都市交通の課題解決に加えて、市民の健康管理、社会保障コストの削減、投資誘致と産業の発展、家庭の幸福にもつながっている。これはよくデンマークで取り上げられる「包括的アプローチ(holistic approach)」と言われるもので、物事を多面的に捉えて問題の本質に迫り、多様性の中で解決策を探る方法である。

・包括的アプローチは自転車以外にも再生可能エネルギー、医療や福祉、スマートシティなど多くの分野で取り入れられている。

・自転車=移動手段という単純な発想ではなく、自転車を多面的にしたたかに利用する包括的なアプローチこそ、デンマークの政策デザインの特徴でもある。

4.複合的な価値を生むパブリックデザイン

良いパブリックデザインとは

・デンマークの世界的都市デザイナーであり建築家のヤン・ゲール曰く、「良いパブリックデザインとは、魅力的な都市をつくりだす。魅力的な都市とは子供たちと高齢者がストリートに見られることだ」(インタビュー「都市の魅力を構成する要素とはなにか?」より)

2009年に「世界で一番素晴らしい都市になる」と宣言したコペンハーゲンのパブリックデザインが優れている要因の一つは、もう50年も前から人間中心のまちづくりを推し進め、自転車道を整備し、パブリックスペースから自動車や駐車場を減らして、市民に開放してきたことである。

もう一つの要因は、市が2025年に「世界で初めてのカーボンニュートラル首都になる」と宣言したことを、政治家や行政の公約と考えるのではなく、市民1人1人が日常生活の中で目標達成に向けて取り組み、街の未来をつくろうとしていることである。

・パブリックデザインとは快適性を追求することだけでなく、都市の課題を解決したり、未来のイノベーションを実現したりするためのデザインでもある。

アマー資源センター:廃棄物施設を都心のスポーツリゾートへ

・世界的な建築家であるビャルケ・インゲルスが率いるBIG(ビュルケ・インゲルス・グループ)が手がけ、2017年3月にオープンした廃棄物発電施設「アマー資源センター」はデンマークのパブリックデザインを象徴する公共建築である。

・屋上には斜面450mの人工スキーコースが設けられ、夏はトレッキングを楽しみ、頂上ではコペンハーゲンの眺望を楽しみながら小さなカフェで寛げる。

・CHP(熱電供給)廃棄物発電は、コペンハーゲンのCPH2025気候プランを支える重要な機能の一つであり、コペンハーゲン市で年間扱う40万トンの固形廃棄物を燃やすことができる。0~63MWまでの発電能力により6万2500世帯に電気を、157~247MWの地域熱供給能力で16万世帯に熱を供給可能となっている。エネルギー効率は90%以上で、世界で最もクリーンな焼却施設である。

 施設の煙突は排ガスだけではなく、大きなリング状の煙(実際は水蒸気)が排出され、夜になるとレーザーで明るく浮かび上がる。この煙突から出されるリング状の煙一つで、1トンの二酸化炭素の量を表しており、市民に1トンの二酸化炭素量とはどの程度のものかを考えてもらうきっかけにしようとしている。さらに内部は見学できるようになっており、市民の環境知性の育成にも一役買っている。つまり、アマー資源センターは、廃棄物発電による電力と熱供給施設×リゾート施設×教育施設ということになる。

画像出展:「HILLS LIFE

『2019年10月、デンマークの首都、コペンハーゲンの海辺の工業地帯、アマーに出現した、まさに「都会の丘」をイメージさせる巨大施設〈コペンヒル〉。』

 

ハーバース:水質を改善した、都心の海のプール

・コペンハーゲンの夏の人気スポットは、イスラン・ブリゲにある市民プール「ハーバーバス」。コペンハーゲン港内の海の中にあるプールで短い夏を楽しむ人々の光景は夏の風物詩にもなっている。

・このハーバーバスもBIGが設計している。一見すると奇抜なアイデアが印象的だが、そこには緻密な計算に基づいた設計がなされている。デザインには、「連続性」「安全性」「アクセス性」「特別な景観」の4つのポイントがある。連続性は、埠頭のエッジから港の海水まで見えるように設計することで、利用者はプールという区切られたスペースに入るのではなく、海に直接入水する特別な体験を得られる。

・安全性は、各プールの外枠角度が中央のライフガードの位置から一目で確認できるようにライフガードの視野に合わせて決められている。このプールは最大で600名が利用できる。しかし無料で運営されているため、複数のライフガードを配置することは難しく、運営経費と安全性のバランスを考えた設計になっている。

・アクセス性は、障がい者を含めたすべての市民が楽しめるように配慮されている。たとえ車椅子であっても奥のプールサイドまで行ける。親が障がい者でも子供はプールで遊べ、子供が障がい者でも親子でプールサイドで楽しむことができる。

・景観はビーチにいる感覚を感じられるよう、ウッドデッキ、埠頭、ボートなどを象徴的に設置することで、都会リゾートとしての特別感を演出している。

画像出展:「Copenhagen Harbour Bath

 

 

スーパーキーレン:多様な住民の交流を育む公園

・コペンハーゲン中心部の北に位置するノアブロ地区に、2012年につくられた公園で、総面積約3万㎡(新宿中央公園は約8万8千㎡)、縦750mの細長い施設である。公園は3つの区画に分かれており、赤の広場(スポーツとアクティビティのエリア)、黒の広場(交流のエリア)、緑の広場(住民の庭のエリア)となっている。地面が赤、黒、緑に色分けされ、広場の特徴が誰でも一目でわかるようになっている。

画像出展:「NEKKI MESSE

 

『デンマークのコペンハーゲン市内に2012年6月に完成した、ユニークな公園がある。その名は「Superkilen(スーパーキーレン)」。市内中心部から北に伸びるノアブロゲーテ通りとテインスヴァイ通りの間となるノアブロ地区に位置し、広さは約3万㎡にも及ぶ。」』

・北欧は移民を積極的に受け入れてきた経緯があり、コペンハーゲンでもアジア系を含めて多国籍化が進んでいる。公園があるノアブロ地区には安い集合住宅があった関係で、多くの外国人が移り住んでいた。このように国籍が異なる住民が多く集まるこの地区は、住民間のコミュニケーション不足、生活様式の違いから起きる些細なトラブルや犯罪が多発するようになった。将来スラム化するリスクを抱えたこの地区の改善は、コペンハーゲン市にとって課題となっていた。

・コペンハーゲン市は同地区にあった国鉄の車庫跡地を公園につくり変えることを決め、競争入札を実施した。その結果、BIGとアーティストユニットのスーパーフレックス、都市デザイン事務所のトポテック1が選出された。

・彼らが取り組んだのは、住民と徹底的に話し合い、住民主導で公園のアイデアをつくりあげることだった。住民との議論を通じて採用されたのは、多国籍の住民の多様性を尊重しながらも住民同士のコミュニケーションを改善し、ノアブロに新しい価値を創出することであったその方法として、約60カ国に及ぶ住民の出身国の遊具、照明、ベンチなどの設備を集めることで、自分の故郷の記憶を辿ると同時に、他国出身の住民の文化に触れて自然と彼らとコミュニケーションがとれるようにするというアプローチをとった。

・コペンハーゲンに世界の遊具を集めた公園ができたとの評判はすぐに広まり、休日になると地元住民に加え他の自治体からも親子連れが訪れるようになった。

・この地区に人が集まることで、新しいカフェ、レストランもオープンして人気のホットスポットとなり、治安も改善されるなど当初の目的を達成しただけでなく、新たな地域再生の成功事例として注目を集めることとなった。

このプロジェクトでは、住民間のコミュニケーションの改善+治安の改善+ノアブロ地区の価値創出など、複合的な成果を生み出すことに成功している。

画像出展:「デンマークのスマートシティ」