AIと医療1

AIに関しては“生成AIの可能性”というブログをアップしています。そして、AIは一時的なものではなくITにとっての革新であり、発展していくものだろうと思っています。

今回の本のタイトルは『AI医療革命』なのですが、興味をもったのはAIを牽引するリーダー的存在のNVIDIAが、特にAI医療に注目しているということを知ったためです。 

画像出展:「日本経済新聞」

米NVIDIAのAI半導体ビジネス、次は医療を深掘り

ご参考:“AI によって医学と研究を進化させる”(NVIDIA)

著者:ピーター・リー、アイザック・コハネ、キャリー・ゴールドバーグ

発行:2024年1月

出版:ソシム(株)

購入してから気づいたのですが、本のタイトルには、「ChatGPTはいかに創られたか」と書かれていました。これには少し戸惑いを感じました。おそらくそれは医療革命という響きが、医療の歴史や現状、あるいは医療に関わるシステムや業務プロセスを変革するような大きなものをイメージしていたためだと思います。

読み終えてその違和感は、本書が掲げるAI医療革命とはソフトウェア(コンピュータ言語)革命であり、医師や医療従事者の「考える」あるいは「つくる」という分野にAIが入り込み、そして支援する(共生医療)。それにより仕事の「質(正確性)」と「量(処理スピード)」を、従来の改善という小さなものではなく、大きな変革と呼べるような医療の在り方に変える。というものではないかと感じました。

IBMが“IBM Personal Computer 5150”を世に送り出したのは1981年です。これはITにおけるハードウェア&パーソナル革命と呼べるような気がします。

画像出展:「historyofinformation

『1981年8月12日、IBMはIntel8088プロセッサをベースとしたオープン アーキテクチャのパーソナル コンピュータオフサイトリンク(PC) を発表しました』

そして、米国では1967年から、日本では1984年から研究者の間だけで使われていたインターネットですが、本格的に普及し始めたのは“Netscape”というブラウザが画期的だったからではないかと思います。その最初のリリースは1994年です。IBMのPC5150のリリースから13年後、これはネットワーク&モバイル革命のように思います。

画像出展:「日経XTECH

ご参考:“なんかいウェブ研究所

私はSEではないので技術的なことは分かりませんが、メインフレームと呼ばれる大型汎用システムの言語はCOBOLだったと思います。一方、オープンシステムでマルチタスクが特長だったUNIXシステムに関しては、FortranC++Javaといったコンピュータ言語が有名だったと思います。

一方、AIで使われている言語は全く新しいタイプの言語であり、LLM(大規模言語モデル)と呼ばれています。生成AIにとってLLMはまさに無くてはならないもので、ニューラルネットワークで構成されるコンピュータ言語モデルとされています。このニューラルネットワークとは生物の学習メカニズムを模倣した機械学習法とされており、今までのコンピュータ言語とは発想が全く異なります。このことが、AIはソフトウェア(コンピュータ言語)革命ではないかと考えた理由です。

画像出展:「@IT

5分で分かるディープラーニング(DL)

『AIにおける人工のニューラルネットワークは、人間の脳が持つ神経ネットワーク(=生体ニューラルネットワーク)を簡易的に模倣、もしくはヒントにしたものです。深層学習に至るまでに、人工ニューラルネットワークは徐々に進化してきました。』

画像出展:「QuadCom

【IT最新トレンド】対話型AIとは何かを分かりやすく解説!

従来のAIは、人間がルールや指示を明示的に与えて学習します。一方、大規模言語モデルは、膨大なデータ(パラメーター)から自律的に学習します。この違いにより、大規模言語モデルは従来のAIよりも柔軟で、幅広いタスクを実行することができます。』

目次

序文 OpenAI サム・アルトマン

Chapter1 ファーストコンタクト

●GPT-4とは何か

●しかし、GPTは実際に医療について何か知っているのか

●医学の専門家も非専門家も使えるAI

●AIとの新たなパートナーシップは、新たな問いを投げかける

●ザックとその母に戻る

Chapter2 機械からの薬

●医療機関の新しいアシスタント

●GPT-4はつねに真実を語るのか

●臨床医のインテリジェントなスイスアミーナイフ

●給付金への説明

●医療の実践における伴走車

●GPT-4は現在進行形

Chapter3 大いなる疑問:それは、「理解」しているのか

●大いなる疑問:GPT-4は本当に自分の言っていることを理解しているのか

●常識的推論、道徳的判断、心の理論

●現実には限界がある

●では、大いなる疑問についてはどうだろう

Chapter4 信頼するが、検証する

●驚きと不安

●臨床試験

●訓練生

●しかし、パートナーとしては……

●先導者

Chapter5 AIで拡張された患者

●持たざる人々

●新しい三者の関係

●情報に基づく選択

●より良い健康

●セラピーAI

Chapter6 もっとはるかに:数字、コーディング、ロジック

●GPT-4は計算して、コードを書く

●GPT-4は不思議なことに論理的であり、常識的な推論もできる

●GPT-4とはいったい何なのか

●GPT-4は単なる自動補完エンジンなのか

●しかし、GPT-4にはいくつかの絶対的限界がある

●注意、GPT-4は微妙な誤りを犯す

●結論

Chapter7 究極のペーパーワークシュレッダー

●GPT-4は、紙の受付票を代替する

●GPT-4は診療記録の作成に役立つ

●GPT-4は品質向上を支援できる

●GPT-4は医療提供のビジネス面を支援できる

●GPT-4は価値基準医療の仕組みに役立つ可能性がある

●GPT-4に医療ビジネスの意思決定を任せられるか

Chapter8 より賢いサイエンス

●例:新しい減量薬の試験

●研究のための読書と執筆

●適格化のためのツール

●臨床データの分析

●消えたデータ

●基礎研究

Chapter9 安全第一

Chapter10 リトル ブラック バッグ

おわりに

序文 OpenAI サム・アルトマン

・本書は、GPT-4の汎用的な能力がどのように医療とヘルスケアに革命をもたらされるかを包括的に概説している。

・医療アプリケーションにおけるGPT-4の安全で倫理的かつ効果的な使用法に関する初期の実践指針を示し、その使用をテスト、認証、監視するための緊急の取り組みを呼びかけている。

Chapter1 ファーストコンタクト

・2022年秋、そのAIシステムはまだOpenAIが秘密裏に開発中だった。

・医療にどのような影響を与え、医学研究を変革する可能性があるかを探る。

・診断、診療記録、臨床試験のほぼすべての領域。

GPT-4とは何か

・初心者ユーザはAIシステムを一種にスマートな検索エンジンのように捉えることが多いようだ。

・GPT-4は検索エンジンと統合できる。

・GPT-4の会話継続能力は素晴らしい。

・GPT-4は論理学や数学の問題を解くことができる。

・GPT-4はコンピュータプログラムを書ける。

・GPT-4はスプレッドシート、フォーム、技術仕様書など解読できる。

・GPT-4は外国語間の翻訳ができる。

・GPT-4は要約、チュートリアル、エッセイ、詩、歌詞、物語を書ける。これらはChatGPTより高度にこなす。

・GPT-4は複雑な数学の問題を解く一方で、単純な算数に間違えることもある。

GPT-4は賢さと愚かさという二律背反の問題は、特に医療において最大の課題の一つである。

・携帯電話を忘れたような感覚はGPT-4にも言える。GTP-4がないと医療が成り立たない、手詰まりになる、そのような感覚を人間の健康という領域において共有することが本書の目的の一つである。

・GPT-4は新しい能力だけでなく、新しいリスクも提供する。

GPT-4は出力の正しさを検証することが非常に重要である。

・GPT-4は自分自身の仕事と人間の仕事を見て、その正しさをチェックすることに長けている。

・医療は人間とAIの連携が求められる分野である。GPT-4だけでなく、人間によるエラーを減らすため、GPT-4をどのように使うか、事例とガイダンスが求められる。

問題の核心にあるのは、人間と機械の新しいパートナーシップ、「共生医療」である。

しかし、GPTは実際に医療について何か知っているのか

GPT-4を医療に使う場合、GPT-4は医療について本当は何を知っているか、ということが大きな問題である。1つ確かなことは、GPT-4は医学の専門的な訓練を受けていないということである。

医学的訓練を受けたGPT-4というアイデアは、OpenAIの開発者だけでなく、多くのコンピュータ科学者、医学研究者、医療従事者にとって非常に興味深いものである。その理由の1つは、GPT-4がどのような医学的「教育」を受けてきたかの正確な理解が、人間の医者についてと同様に重要なことが多いからである。

「相関関係は因果関係を意味しない」。この区別は医療において決定的に重要である。例えば、パスタをたくさん食べると高血糖になるか、それとも単に相関関係があるだけで、根本的な原因は別にあるのかを知ることは重要である。GPT-4が因果関係の推論が可能かという問題は、本書の範囲外であり、まだ決着がついていないと言うのが適切である。

医学の専門家も非専門家も使えるAI

・GPT-4は自らの回答を「易しく書き直して」、医学の素人も含めて、様々な人がアクセスできるようにすることが可能である。

・感情を想像し、人に共感できることがGPT-4の最も興味深い点の1つである。これは人の心の状態を想像する能力に関係しているかもしれない。このようなAIシステムとのやりとりについては、ときに機械による人間の感情の評価を「不気味」に感じることもあるだろう。

・GPT-4は不可解な診断例や難しい治療法の決定や臨床事務にも役立つが、最も重要なことは「患者との対話」において医師を支援する方法を見出したことだろう。GPT-4はしばしば驚くべき明晰さと思いやりをもってそれを実現する。

AIとの新たなパートナーシップは、新たな問いを投げかける

・『ここまでで、GPT-4がまったく新しいタイプのソフトウェアツールであることはおわかりいただけたと願う。GPT-4の前に登場したヘルスケア向けのAIツールは、放射線スキャンを読み取ったり、患者記録のコレクションから入院リスクの高い患者を特定したり、診療録を読んで正しい請求コードを抽出し、保険請求のために提出したりといった特殊なタスクをこなしたりするものが多かった。このようなAIの応用は、重要かつ有用なものだ。何千人もの命を救い、医療費を削減し、医療に携わる多くの人々の日々の体験を向上させてきたことは間違いない。

しかし、GPT-4は、まさに別種のAIである。GPT-4は、特定のヘルスケアタスクのために特別に訓練されたシステムではない。実際、医療に関する専門的なトレーニングは一切受けていない。GPT-4は、従来の「狭義のAI」ではなく、医療に貢献できる初めての「汎用的な人工知能」なのだ。この点で、本書が扱う真の問いは、次のように要約される。すなわち、もし医療に関するほぼすべてを知る「箱の中の脳」があったら、それをどのように使うか、である。

しかしながら、もう1つ、より根本的な疑問がある。これほど重要かつ個人的かつ人間的で大きな役割を果たす資格が、人工知能にはどのくらいあるか、である。我々は皆、医師や看護師を信頼する必要がある。そのためには、我々をケアする人たちが良い心を持っていることを知る必要がある。

それゆえ、GPT-4が持つ最大の疑問、そして最大の可能性が見えてくる。GPT-4はどのような意味で「善良」なのだろう。そして、結局のところ、このようなツールは、我々人間をより良くしてくれるのだろうか。

ザックとその母に戻る

・『GPT-4をはじめとするAIが「考える」「知る」「感じる」のか、コンピュータ科学者、心理学者、神経科学者、哲学者、そしておそらく宗教家までもが、延々と続けるだろう。知性と意識の本質を理解しようとする我々の願いは、人類にとって最も根源的な旅の1つであることはたしかである。しかし、最終的に最も重要なのは、GPT-4のような機械と人間がどのように協力し、パートナーシップを結び、人間の状態を改善するために共同で探求していくのかということだ。

Chapter2 機械からの薬

・GPT-4は文句を言ったり、叱ったりするのが好きではない。

・GPT-4と「関係」を持つという考え方は、本書の核心的な問いかけの1つであり、おそらく物議を醸すだろう。従来の常識では、思考し感情を持つ知覚的存在としてAIシステムを捉えるのは間違っており、AIを擬人化することには本当に危険が伴うと言われている。この問題は最も個人的な事柄の1つである医療において、特に重要だと思われる。

・GPT-4は常に変化し改善している。

医療機関の新しいアシスタント

・米国の医療従事者の仕事量は20年間で劇的に増加した。医師や看護師は助けを必要としている。

・医療現場の日常業務の多くは、過酷で単調な事務作業などに追われている。

GPT-4はつねに真実を語るのか

GPT-4が出す間違った回答の問題点は、その答えが正しく見えることである。なぜなら、説得力のある方法で提示されるからである。

・GPT-4が医療現場のどこで使用すべきか、また医学のあらゆる側面、さらには医学研究論文などのレビューにも当てはまることである。

・GPT-4のような汎用AI技術は、教育的な推測や情報に基づく判断が必要とされる状況に巻き込まれる。

・医師-患者-AIアシスタントの「三位一体」が、医師-患者-AIアシスタント-AI検証者へと拡張される可能性がある。

臨床医のインテリジェントなスイスアミーナイフ

・GPT-4は診療記録だけでなく、様々なフォーマットで質の高い診察後のサマリー(患者の診療情報や入院・退院時の概要、治療の経過などを簡潔にまとめた文書)を作成できる。

・GPT-4は会話に非常に長けているので、患者の状態や病歴に基づいて、内容の変更や推奨事項を提案することも可能である。

給付金への説明

・GPT-4はデータを説明、比較、パーソナライズ、最適化し、フィードバック、推奨、精神的サポートを提供することで、医療費、検査結果、健康アプリなど消費者が自身の健康データを解読し、管理するのを支援できる。

医療の実践における伴走車

・GPT-4はエビデンスに基づいた仮説を立て、複雑な検査結果を解釈し、一般的な疾患だけでなく稀な疾患や生命を脅かす疾患の診断も認識し、関連する参考文献や説明を提供することができる。

・GPT-4は高度に専門的な研究論文を読み、非常に洗練された議論を行うことができる。

・GPT-4の“ユニバーサル・トランスレーター”機能は、医師や看護師を目指す人々や一般の人々に対して、医学知識の普及や医学教育に役立つ可能性がある。

・GPT-4は医学雑誌の記事を読み、小学6年生の理科の授業にふさわしい要約とクイズを書くことができる。

・GPT-4は高度な医学研究の場で、推論を駆使して議論を促し、次の研究ステップの可能性を議論し、可能性のある答えを推測することができる。

・GPT-4はインフォームドコンセントのような倫理的概念にも精通していると思われる。

・GPT-4は全体として、透明性、説明責任、多様性、協調性、論理性、尊重の重要性について核心的な理解を持っている。

GPT-4は現在進行形

・GPT-4は急速に進化しており、ここ数カ月の調査においても、その能力が著しく向上しているが、未完成であり、今後も絶え間なく進化し続けるだろう。

本書の最大の目的は、この新しいAIが、ヘルスケアや医療、そして社会のその他の分野で果たす役割について、今後極めて重要な社会的議論に貢献することである。しかし、最も重要なことは、GPT-4自体が目的ではなく、新たな可能性と新たなリスクを併せ持つ世界への扉を開くものである。

今後、GPT-4を凌ぐ有能なAIシステムは登場するだろう。GPT-4は加速度的に強力的になっていく汎用AIシステムの最初の一歩に過ぎないというのが、コンピュータ科学者たちの共通認識である。

人工知能の進化に合わせ、医療へのアプローチをどのように進化させるのがベストなのかを理解することである。

Chapter3 大いなる疑問:それは、「理解」しているのか

・GPT-4が優れた会話システムであるのは、会話の全体像を把握している点である。これは今までのAI言語システムと大きく異なる点である。

・何のガイダンスもない場合、GPT-4はその回答を簡潔にするか、あるいは拡大解釈するかを自分で決めなければならない。

・GPT-4は口調を調整し、象徴を想起させ、進行中の会話の「雰囲気」に合わせるという能力を持っている。

大いなる疑問:GPT-4は本当に自分の言っていることを理解しているのか

・GPT-4は読み書きを理解しアウトプットに意図はあるのか、それとも言葉をつなぎ合わせた無心のパターンマッチングなのかが疑問であるが、多くのAI研究者の見解は後者であり、ディープラーニングだけでは限界があると考えている。しかしながら、科学の問題としてこの「大いなる疑問」に答えるのは驚くほど難しい。そして、この種の問いは、科学的、哲学的議論の的であり、この疑問は長く続くものと思われる。

・GPT-4は詩を書くより分析する方が、文章を作成するより、それを見直す方が得意のようである。

GPT-4が自分の意志を持っているとは思えないが、確信的な捏造や省略、さらには過失もある。このことは検証を必要とする理由である。

常識的推論、道徳的判断、心の理論

・GPT-4は理解していないという根拠には、具体的な経験の欠如がある。また、より高度な知性、例えば、物理的世界における推論、常識、道徳的判断などにおいての限界は長年の研究結果もある。

・GPT-4はイエスかノーの答えを求める質問に応じないことによって、「自分の意思」を示しているようである。

現実には限界がある

・今の所、「理解」という問題に決着をつけられていないが、GPT-4の推論能力にはいくつかの現実的な限界がある。

・GPT-4は数学において知性と無知が混在した不可解な動きを見せることがある。

では、大いなる疑問についてはどうだろう

GPT-4のように純粋に言語だけで訓練されたAIシステムは、「理解」していないという見解は正しいと思う。そして、大いなる疑問に関する全体的な科学的コンセンサスはその方向性に傾いている。しかしながら、少なくともGPT-4に関しては、これを証明することは意外に難しい。

・『数ヶ月にわたる調査の結果、私[ピーター・リー]は、最新の科学的研究によるテストでは、GPT-4が「理解が欠けている」ことを証明できないという結論に達した。そして、実際、我々がまだ把握していない、真に深遠な何かが起こっている可能性は十分にある。GPT-4は、我々がまだ特定ができていない何らかの「理解」と「思考」を持っているのかもしれない。ただ、1つ確実に言えるのは、GPT-4はこれまでに見たことのないものであるということだ。そして、GPT-4を、「単なる大きな言語モデル」として片付けるのは間違いであるということだ。

・『大いなる疑問に対する回答や、知能と意図性についての、おそらくさらに大いなる疑問は、我々の科学的・哲学的探求の中心にある。一方で、最終的に最も重要なのは、GPT-4のようなAIシステムと我々の関係が、我々の心や行動をどのように形作るかということかもしれない。人間のように「理解」できるかに関わらず、GPT-4は、4章[信頼するが、検証する]で見るように、診療所から研究室に至るまで、我々の理解を大いに助けてくれるだろう。』

リーナス・トーバルズ

GPU(Graphics Processing Unit)の開発・製造において、生成AIのリーディングカンパニーであるNvidiaによるArm買収断念の報道は2022年1月でした。現在、ソフトバンク配下のArm社は英国ケンブリッジに本社を置く、RISC(縮小命令セットコンピューター)チップの開発に特化した企業で、携帯電話やスマートフォンのほとんどの製品の中に入っています。

このArmの対抗馬として期待されているのがオープンソースのRISC-Ⅴです。このRISC-Ⅴ ISA(命令セットアーキテクチャー)を利用することにより自由にCPUを開発することができます。しかも、設計したCPUをオープンソースにする必要はなく、商用ライセンスのCPUコアを作ることができます。

※オープンソース:ソフトウェアを構成しているプログラム「ソースコード」を無償で一般公開すること。

NVIDIA’s secure RISC-V processor”(Youtube[英語])

『Security is key to many of NVIDIA’s markets. Example applications are protecting video and gaming IP, keeping private data on shared servers from leaking, and safety of self-driving cars. NVRISCV is at the core of NVIDIA’s security architecture. It is a RISC-V core with closely coupled co-processors that incorporate many security features to protect against a variety of attacks. Some features are architectural and we are proposing those as RISC-V specifications; others are implementation specific. We believe that RISC-V is ideally positioned to standardize around a set of security specs and best practices, helped by transparency and joint development by the community, inherent to its open source nature.』

以下は上記の英文をDeepLを使って翻訳した文章です。

『セキュリティは、エヌビディアの多くの市場にとって重要です。アプリケーションの例としては、ビデオやゲームIPの保護、共有サーバー上のプライベートデータの漏洩防止、自動運転車の安全性などがあります。NVRISCVは、NVIDIAのセキュリティ・アーキテクチャの中核です。これは、密接に結合したコプロセッサを持つRISC-Vコアで、さまざまな攻撃から保護するために多くのセキュリティ機能を組み込んでいます。いくつかの機能はアーキテクチャ上のものであり、私たちはそれらをRISC-V仕様として提案しています。私たちは、RISC-Vが、そのオープン・ソースという性質に固有の透明性とコミュニティによる共同開発によって、一連のセキュリティ仕様とベスト・プラクティスを標準化するのに理想的な位置にあると信じています。

日本HPで営業していたのは約12年前なのですが、オープンソースと言われればソフトウェアの話しという認識しかなかったため、CPUというハードウェアの世界にもオープンソースが入り込んでいるという事実に大変驚きました。

オープンソースと言われれば、私の場合Linuxです。IBM社がLinuxを核にサーバーの長期計画を発表したのは2001年でした。HP社はUNIX(HP-UX)が主力であったという経緯もあり、Linuxに対しては消極的でした。SEの評価はLinuxは軽く優れたOS(オペレーティングシステム)というものであり、製品品質に大きな懸念はなかったのですが、メーカーサポートという面で営業としてはなかなか難しい製品となっていました。

このような懐かしい昔話を思い出していて、ふと気になったのが、「今、Linux、特に開発者のリーナス・トーバルズはどうなっているのだろう?」という疑問です。

それがぼくには楽しかったから』、これがリーナス・トーバルズの本の題名です。なお、原題は『JUST FOR FUN』です。

著者:リーナス・トーバルズ

訳者:風見潤

初版発行:2001年5月

出版:(株)小学館プロダクション

画像出展:「Wikipedia

Linus Benedict Torvalds

『フィンランド、ヘルシンキ出身のアメリカ合衆国のプログラマ。Linuxカーネルを開発し、1991年に一般に公開した。その後も、公式のLinuxカーネルの最終的な調整役を務める。』

目次

謝辞

序章 人生の意味Ⅰ

第1部 オタクの人生

第1章 眼鏡と鼻と

第2章 初めてのプログラミング

第3章 フィンランドの冬に

第4章 トーバルズ家誕生秘話

第5章 高校時代

第6章 大学と軍隊

第7章 フィンランド再び

第2部 オペレーティング・システムの誕生

第1章 シンクレアQL来る

第2章 人生を変えた本

第3章 ユニックスを学ぶ

第4章 三台目のコンピュータ

第5章 プログラミングの美しさ

第6章 ターミナル・エミュレーション

第7章 誕生

第8章 アップロード

第9章 著作権の問題

第10章 ミニックス対リナックス

第11章 ウィンドウとネットワーク

第12章 恋人!

第3部 舞踏会の王

第1章 初めてのアメリカ

第2章 商標登録

第3章 就職

第4章 シリコンバレーにようこそ

第5章 リナックスの成功

第6章 不協和音

第7章 株式公開

第8章 コムデックス

第9章 リナックス革命は終わったか?

第10章 押しつけるな!

第11章 舞踏会

第12章 サポート

第13章 知的財産権

第14章 コントロール戦略の終焉

第15章 楽しみが待っている

第16章 なぜオープンソースこそ筋が通っているのか

第17章 名声と富

終章  人生の意味Ⅱ

ブログはリーナス・トーバルズがオープンソースに対し、どう思っているのかに注目しました。

第3部 舞踏会の王

第16章 なぜオープンソースこそ筋が通っているのか

●『IBMがパーソナル・コンピュータを開発したとき、何気なく、そのテクノロジーをオープンにしたので、誰でも複製を作れるようになったんだ。そのたった一つの行動は、PC革命に拍車をかけただけじゃなく、やがて情報革命、インターネット革命、ニュー・エコノミ―(なんと呼ぶにせよ、いま世界中で大きな変化を引きおこしているもの)を順に呼び寄せる結果となった。

これは、オープンソース精神から生み出される限りない利益というものを、もっともよく表している。IBM PCはオープンソースのモデルとして開発されたわけじゃないけど、オープンにされたことで、個人や企業が互換機を作り、改良し、売ることができるようになり、オープンソース・テクノロジーの好例となったんだ。

オープンソース・モデルの一番純粋な形では、誰でもプロジェクトの開発や市場性開発などに参加できる。リナックスは明らかにそのもっとも成功した例だ。ヘルシンキのぼくの散らかった寝室から始まり、成長して、有史以来最大の共同プロジェクトにまでなった。その始まりには、コンピュータのソースコードは自由に共有すべきだと信じるソフトウェア開発者に共通の理念があった。その裏付けとなったのが、この運動の強力な武器としての一般公有使用許諾書(GPL―旧来的な著作権に反対するもの)だった。リナックスは発展し、最高のテクノロジーを開発し続ける一つのモデルになった。そして、リナックスがウェブ・サーバー用OSとして次々と採用されていることや、株式公開での予想外の好評でもわかると思うけど、リナックスはさらに発展して、広く市場に受け入れられるようになったのだ。』

●『オープンソースという手法を人々が初めて耳にしたとき、それはばかげたものに聞こえたようだ。だから、オープンソースの長所が理解されるのに何年もかかった。

ぼくらは理念があって、オープンソースを売り込んだわけじゃない。オープンソースこそ最高のテクノロジーを開発し、改良する最良の方法だとわかってきたので、その理念が世間の注目を集めだしたのだ。

いまや、その理念は市場で評価を得つつあり、その評価のおかげでオープンソースがますます受け入れられるようになってきている。さまざまな付加価値サービスをおこなう会社が作られるようになり、それらの会社はテクノロジーを普及させる手段としてオープンソースを利用することができた。お金が転がりこむと、世間は信じるようになるもんだ。

オープンソースというジグゾーパズルの中で、一番理解されていないピースの一つは、どうしてこんなに大勢のプログラマーが、まったくの無報酬で働こうとするのかってことだろう。

順序として、その原動力について述べておこう。多少なりとも生存が保証された社会では、お金は最大の原動力にはならない。人は情熱に駆り立てられたとき、最高の仕事をするものだ。楽しんでいるときも同じだ。これは、ソフトウェア技術者だけじゃなく、劇作家、企業家にも当てはまる真実だ。オープンソース・モデルは、人々に情熱的な生活を送るチャンスを与える。楽しむチャンスも、さらに、たまたま同じ会社で机を並べている数人の仲間とではなく、世界で最も優秀なプログラマーたちと仕事をするチャンスも、オープンソースの開発者たちは、仲間からいい評価を得ようと懸命に努力する。こうしたことは大きな原動力になるに違いない。

●『オープンソース現象を理解する一つの方法がある―それは、何世紀も昔(現代の話しではないけれど)、科学が宗教界からどのように見られていたかを考えることだ。科学は、最初のうち、何か危険で、破壊的で、反対体制的なものと見なされた―ソフト会社は時々、オープンソースをそんなふうに見ている。科学は宗教体制を攻撃しようとして生まれたわけじゃなかった。それと同じように、オープンソースだってソフトウェア体制を破壊するために考えだされたわけじゃない。オープンソースは、最高のテクノロジーを生み出すために、そしてそのテクノロジーがどこに行くかを見守るために存在するんだ。』

●『オープンソースは理にかなっている。人々は、言動の自由について、屁理屈をこねたりはしない。自由こそ、人々が生命をかけて守ってきたものなのだから。自由はいつでも、生命をかけて守るべきものだ。しかし、はなっから自由を選択するのもまた簡単なことじゃない。オープンソースについても同じことがいえる。オープンにするかどうか、決定を下さなくてはならない。最初からオープンにするという立場に立ってみると危なっかしくてしようがないが、実際にやってみると、その立場はずっと安定したものになっている。』

画像出展:「レバテックキャリア」

Linuxとは?

Linuxの将来性は?

Linuxが利用されている分野

Linuxの特徴、メリット etc

画像出展:「Wikipedia」

Androidは、Googleが開発した汎用モバイルオペレーティングシステムである。Linuxカーネルやオープンソースソフトウェアがベースで、主にスマートフォンやタブレットなどのタッチスクリーンモバイルデバイス向けにデザインされている。』

※カーネル:OSの中核。基本機能を担う部分。

画像出展:「ZDNET」

今やLinux Foundationは、Linux以外にも1000以上のオープンソースプロジェクトを抱えている。しかし、昔からこうだったわけではない。2007年に設立された頃のLinux Foundationは、ほぼ完全にLinuxのためだけの団体だった。当時からずっとLinux Foundationのエグゼクティブディレクターを務めているJim Zemlin氏は、先日ウェブで公開されたDell Technologiesのデベロッパーコミュニティ担当マネージャーBarton George氏との対談の中で、同財団は創設に関わった人々の想像をはるかに超えて拡大してきたと語った。

生成AIの可能性

AIとは人工知能(Artificial Intelligence)ですが、そもそもよく分かっていません。特に知りたいことはビジネスに対するインパクトの大きさです。一過性の盛り上がりなのか、“クラウド”のように主流としてITビジネスをリードしていくような革新なのかということです。

購入したニュートン別冊は、2018年5月発行なので少々古いのですが、図表も多く内容的にも興味深いものでした。

編集:中村真哉

発行:2018年5月

出版:(株)ニュートンプレス

生成AI(Generative AI)については、NRI(野村総合研究所)さまのサイトをご紹介させて頂きます。“生成AIとは” 3分40秒の動画もあり、大変勉強になります。

こちらのDOORSの寄稿は非常に具体的です。(執筆者はブレインパッドの高田洋平様です)

生成AI(ジェネレーティブAI)とは?仕組みやChatGPTとの関連性を解説

ブログで取り上げたのは目次の黒字の個所です。

目次

1 基礎から学ぶ人工知能

●人工知能の分類

●人工知能の歴史

●ヒトとコンピューターの画像認識①~②

●ヒトの視覚野のしくみ①~②

●ディープラーニング

●機械学習①~②

●ディープラーニングの未来①~②

2 人工知能の最新応用技術

●人工知能の進化

●将棋プログラム

●アルファ碁

●保健医療分野におけるAIの活用

●人工知能の病理診断

●人工知能の内視鏡検査

●人工知能の眼底検査

●自動運転  ※ばっちゃまの米国株

●人工知能のひび割れ点検

●人工知能の惑星探査

3 人工知能の未来

●人工知能とセキュリティ

●人工知能と公平性

●人工知能とプライバシー

●汎用人工知能①~②

●シンギュラリティ

4 人工知能の新領域へ

●インタビュー 山川 宏博士

人間と調和できる人工知能をつくりたい

●インタビュー 金井良太博士

AIに意識をもたせることで意識の本質にせまりたい

●インタビュー 山本一成氏

AIが将棋の可能性を広げてくれた

●インタビュー 坊農真弓博士

「ロボットは井戸端会議に入れるか」会話にあるルールを解き明かしたい

●インタビュー 井上智洋博士

AIが人間を仕事から「解放」してくれる

●インタビュー 佐藤 健博士

AIに裁判の結果の理由を説明させる

●インタビュー 平野 晋博士

AIに常識や倫理観、感情は必要か

1 基礎から学ぶ人工知能

ヒトとコンピューターの画像認識①~②

私たちは、どのように画像を認識している?

・自動運転や医療診断に欠かせないのは画像認識です。この画像認識を可能にし、人工知能の飛躍的進化をもたらしたのが「ディープラーニング」です。例えば、イチゴを見た瞬間にすぐにイチゴだと分かるのは、眼から入った視覚情報が脳の後方(後頭葉)にある「一次視覚野」に送られ、さまざまな情報と統合されてイチゴと認識されるからです。 

画像出展:「ゼロからわかる 人工知能」

コンピューターはディープラーニングで特徴を抽出

・従来のコンピューターは、足し算や掛け算などの計算を大量に行うことはできますが、瞬時にイチゴをイチゴであると認識することはできません。

ディープラーニングはイチゴの画像をすべて数値化し膨大な計算を行うことで、イチゴの特徴を抽出します。

まず、イチゴの画像を非常に細かい画素(ピクセル)に分け、その画素が画像のどこに位置するのかといった「位置情報」と、その画像は何色なのかといった「色情報」を持った数値として処理します。イチゴの画像もコンピューター内では、ただの数学の羅列というわけです。

・イチゴの特徴には、「表面につぶつぶがある」「丸みをおびた三角の形をしている」といった特徴があります。これらの特徴を抽出する必要があるのですが、従来の人工知能ではこの「特徴の抽出」を行うことは難しく、研究者が人工知能に「イチゴとは赤いもの」「イチゴには緑色のへたがついている」など逐一、ルールを教える必要がありました。しかしながら、イチゴの特徴を完全に言語化することは不可能であり、精度よく認識できる人工知能を開発することはできませんでした。

ディープラーニングでは、脳の構造を模した「ニューラルネットワーク」という方法を用いて、特徴を自動で取り出すルールを自ら獲得することができますつまり、「特徴の抽出」を行うことができるのです。


ディープラーニング

コンピューターの中に神経網をつくりだす「ディープラーニング」

ニューラルネットワークとは神経回路を模してつくられたシステムです

・ニューラルネットワークは、データを受け取る「入力層」、学習内容に応じてネットワークのつながり方を変える「隠れ層」、そして最終データを出す「出力層」に分けられます。それぞれの層は、「ノード」とよばれる仮想的な領域からなります。ノードでは以下のような計算が行われ、流れる情報の量が制御されます。 

画像出展:「ゼロからわかる 人工知能」

これは、人間におけるニューロンのはたらきに相当します。このニューラルネットワークを何層にも重ねる(深くする)ことで作られるシステムが「ディープラーニング」です。ディープラーニングは脳の視覚野と同じように、入力層に近い部分では単純な形しか判別できません。しかし層を重ねることで、より複雑な特徴を得ることができます。そして最終的にコンピューターは、イチゴそのものの概念を手に入れることができるようになります。このようにディープラーニングは、視覚野が行う情報処理のしくみに非常に似ています。

機械学習①~②

人工知能の“学習”とは、出力結果と正解との誤差小さくすること

・人工知能は、最初は画像からイチゴの特徴を正しく抽出することも、正しい重みづけをすることもできないので、人工知能はイチゴとリンゴを判別することはできません。そこで、分類した結果の答え合わせを行い、正解との誤差を小さくできるように、重みづけを変えていきます。

コンピューターが“学習”するしくみを見てみよう

・「機械学習」とは、人工知能に試行錯誤を繰り返させ、正しい結果が出せるようにノードとノードの重みづけ徐々に変化させていくことを指します。

・イチゴとリンゴを分類する方法を見てみます。

-学習前の人工知能は重みづけがないので、イチゴがもつ特徴が何か(画像のどこに注目するか)も分かっていません。

[STEP1.画像入力]:イチゴの画像を入力する。この画像には「イチゴ」のレベルが貼られている。

[STEP2.分類]:初期段階では、リンゴとイチゴを分類する特徴が抽出できず、適切な重みづけも不明である。人工知能はすべてを足し合わせ平均をとる。

-人工知能が間違ってリンゴと判定したとしましょう。

[STEP3.結果の出力]:リンゴである確率とイチゴである確率を比較し結果を出す。今回の場合は50%なので判別できない。

-正しい答え(イチゴ)を導き出せるように調整を加えていきます。

[STEP4.答え合わせ]:画像に貼られているラベル(「イチゴ」)と出力結果を突き合わせる。そして、答え合わせの誤差が小さくなるように、人工知能は自ら線の重みづけを変えていく。その結果、抽出される特徴も変わっていく。これが「機械学習」である。ディープラーニングの場合、出力層から入力層に向けて、多くの隠れ層をさかのぼってすべての重みづけを変更していく。


インターネットの拡大が人工知能を賢くした

人工知能は、何百枚、何千枚と学習を繰り返すことで、徐々に正しい答えを導き出せるようになります。

[STEP5.多くの画像を入力]:人工知能に機械学習を行わせるために、リンゴとイチゴの画像を数多く入力する。このときも、リンゴの画像には人間によって「リンゴ」、イチゴの画像には「イチゴ」と正解ラベルが貼られている。

[STEP6.学習によって適切な特徴と重みづけを得る]:数多くの画像について一つずつ、分類しては答え合わせを行うことで、誤差を小さくしていく。今回の場合、当初の誤差の合計は100だったのに対し、機械学習を繰り返すことで、誤差の合計が30になっていることが分かる。このような計算によって、人工知能は適切にリンゴとイチゴを分類することができるようになる。

・長年、ディープラーニングは実用に耐えるほどの精度が出せないという問題を抱えていました。その理由は、層が深くなるにつれて、答え合わせの結果がうまく隠れ層に伝わらず、重みづけを最適化できなかったためです。

しかし近年、答え合わせの方法を改良したり、本格的な機械学習を行う前に、人工知能を“プレトレーニング”したりすることで、非常に効率よく学習を行うことができるようになりました。

また、インターネットの拡大とともに、使用できる画像データが爆発的に増えたことで、容易に機械学習を行うことができるようになったり、人工知能が行う計算に特化したプロセッサ(中央処理装置)の開発が進んだりしたことも、現在、人工知能の性能が劇的に向上している大きな要因です。


ディープラーニングの未来①~②

ディープラーニングの活用例

・声の正体は「音波」であり、周波数という数値で表すことができます。この周波数を人工知能に取り込ませることで、「音声認識」が可能になります。iPhoneのSiriなどが該当します。

・日本語や英語の単語は「文字コード」として数値に置き換えられ、翻訳のような「自然言語処理」に利用されています。2016年、Google社はウェブ上で利用できるGoogle翻訳にディープラーニングを用いることで、翻訳の精度を劇的に向上させました。

・囲碁ソフト「AlphaGo」もディープラーニングを用いています。AlphaGoはそのメカニズムは過去のプロ棋士同士の対局中に現れた膨大な石の配置パターンを読み込むことで、その場面における自分が有利か不利かを判断しています。

AlphaGoを開発したイギリスのDeepMind社は更に2017年10月、囲碁ルールのみを与えた「AlphaGo Zero」が40日という短期間で、従来のAlphaGoのどのバージョンよりも強くなったことを発表しました。AlphaGo Zeroで用いられた手法は「強化学習」というものです。強化学習では、研究者は人工知能に過去の対局記録や正しい手筋を教えません。そのかわりに、人工知能同士で対局を行わせ、より多く勝てる打ち筋に「報酬」を与えます。人工知能が自ら、より多くの報酬を得られる、つまりより多く勝てるように試行錯誤して最適な打ち筋を学習していくのです。過去データを用いることなく強くなったことを示すこの結果は、もはや人工知能が人類の手をはなれて進化し続けることを示唆しているといえるかもしれません。

画像出展:「Google DeepMind

取り組んでいる課題

・ディープラーニング

・理論と基礎

・制御とロボット工学

・教師なし学習と生成モデル

・強化学習

・神経科学 

・科学

未来を見通すことも可能になりつつある人工知能

・これまでのディープラーニングは主に、静止画像のような「静的な(時間の流れをともなわない)」情報に対して用いられてきました。しかし、動画のように先の展開を予測する必要がある情報の場合、従来のディープラーニングを用いることはできません。

そこで最近、注目を集めている技術が「リカレント・ニューラルネットワーク(RNN)」です。「リカレント」とは「循環する」という意味で、今の時刻の情報を処理する際に、少し前の時刻の情報と統合したうえで処理し、出力することを意味します。少し前の自分の状態に学ぶしくみだということもできます。

私たちは、時々刻々と変化する風景をとらえ、物体の動きを予測し、次の行動を決定します。たとえば正面からボールが飛んできた場合、私たちは反射的によけることが可能です。しかし現在の人工知能は、このような当たり前の予測を行うことができません。なぜなら、ボールが動く映像の実体は、静止画を1枚1枚コマ送りしたものにすぎず、それぞれの静止画のつながりを理解することはむずかしいためです。人工知能にとって「時間」を理解することは困難なのです。

私たちの脳内では、ボールの視覚情報が一次視覚野から二次視覚野、そして高次視覚野へと伝えられる一方で、高次視覚野から一次視覚野へと“逆流”する信号もあるといいます。これは、先に伝わった情報と後から来た情報を統合することで、物体の動きを補正し、正確にとらえるためだと考えられています。この“情報の逆流”を人工知能に搭載した技術がRNNであるといえます。

2 人工知能の最新応用技術

人工知能の進化

人工知能が動作や言葉を理解し、社会に進出していく

人工知能は新しい能力を獲得するたびに、人工知能が活躍する領域は広がっていくと考えられます。特に、動作に関連する概念は、ロボットが人間社会で実現に行動するためには必須の能力だといえます。

能力1.画像を正確に見分けられる

能力2.複数の感覚データを使って特徴をつかむ

・今後は人工知能も、視覚情報に温度や音などの情報も組み合わせて、抽象的な概念を理解できるようになります。

能力3.動作に関する概念を獲得する

・「ドアを開ける」といった、自分の動作(例えばドアを押す)とそれがもたらす結果(ドアが奥に開く)を組み合わせた概念です。これらの動作の概念がないと、ロボットは行動計画を立てることができません。

能力4.行動に通じた抽象的な概念を獲得する

・例えば、ガラスのコップは硬いといった抽象的な概念(感覚)は、さまざまな材質のコップを実際に触ったり、落として壊したりすることで獲得できます。こういった感覚は、人間とともに暮らして家事や介護を行うロボットには必須です。

能力5.言葉を理解する

・音声認識や自動翻訳などの言語に関する能力はかなり進んでいますが、まだ人間と同じように言葉を理解しているわけではありません。

能力6.知識や常識を獲得する

・言葉が理解できると、人工知能はインターネット上の情報などから知識や常識を獲得することができるようになります。

3 人工知能の未来

汎用人工知能①~②

汎用人工知能では、脳をまねてモジュールをつなぎ合わせる

・今の人工知能は、ディープラーニングなどのニューラルネットワークを使用した「モジュール」(プログラムの構成単位)をいくつか組み合わせることでできています。現在は、人間が特定の問題に応じてモジュールを組み合わせて人工知能を設計しています。つまり、その問題しか解けない設計になっています。それに対して、全能アーキテクチャが目指す「汎用人工知能」は、私たちの脳が普段から行っているように、必要に応じて複数のモジュールを自動的に組み合わせることを目指しています。臨機応変に自分自身の設計(プログラム)を変えることで、さまざまな問題を柔軟に解決できるようになります。

・現在の開発状況から見て、人間と同程度の能力をもつ汎用人工知能は2030年頃に完成するのではないかという声が出ています。

画像出展:「ゼロからわかる 人工知能」

大脳基底核や大脳皮質のほか、運動に関わる小脳に相当する人工知能の開発は比較的進んでいますが、海馬に相当するものや、それらを統合するための人工知能の開発は遅れています。

未知の状況に対応する能力をもつ汎用人工知能は、自律的な行動が求められる「災害救助ロボット」や「惑星探査機」などに応用されることが期待されています。

・モジュールは、脳の各部位や領野に対応するプログラムです。全脳アーキテクチャでは、各モジュールを必要に応じてさらに細かい機能に分類して、それらを統合することで、人間の脳と同じような機能を実現する汎用人工知能を目指しています。

シンギュラリティ

シンギュラリティの到来時期は賛否両論

・「シンギュラリティ(singularity)」は技術的特異点と訳される。人工知能が自分自身で猛烈な進化を続けると、人間の知能を追い抜き、遂には人類がその先の変化を見通せない段階まで進化するという説があります。これはアメリカの人工知能研究者であるレイ・カーツワイル博士が2005年に発表した著書『シンギュラリティは近い』によって世界に知られるようになりました。 

画像出展:「ゼロからわかる 人工知能」

・あと数十年でシンギュラリティがやってくるという説には否定的な意見は少なくありません。しかしながら、時期は分かりませんが人工知能がこのまま進化することで、あらゆる分野で人間の知能を上回る時代がいずれやってくることについては、人工知能研究者の多くが同意しているようです。

4 人工知能の新領域へ

インタビュー 平野 晋博士

AIに常識や倫理観、感情は必要か

画像出展:「ゼロからわかる 人工知能」

 

 

 

『AIネットワーク社会推進会議で取りまとめられた「国際的な議論のためのAI開発ガイドライン案」。AIの著しい発展を受け、近い将来、社会にAIネットワークが構築されることを前提として検討された九つの開発原則である。ただし、このガイドライン案はあくまで指針案であり、法的な拘束力はない。』

総務省の“AIネットワーク社会推進会議”は平成28年からのようです。

感想

人工知能は新しい能力を獲得するたびに、人工知能が活躍する領域は広がっていくと考えられます』これが全てのように思います。

過熱状態は落ち着き、浮き沈みはあるでしょうが、生成AIはクラウドに匹敵するようなITを長期的に牽引する革新になるだろう思います。

開発環境あるいは開発支援のサービスも充実してきています。AIをリードしているNVIDIAといえばGPUという汎用型のAIアクセラレーターで有名ですが、各ニーズに対応した特化型のAIアクセラレーターも登場しています。CPUの両雄(IntelとAMD)も動いているようです。特にAMDは2023年6月にMI300Xという汎用型GPU(GPGPU)を発表しました。Big TechのMetaも、Google、Amazonに続きAI用の独自チップの開発を発表しました。さらに、テスラは独自に設計したチップとインフラストラクチャを使用したカスタムスーパーコンピューター“Dojo”を発表しました。

ソフトウェア、ハードウェアの進歩は止まることはありません。世界中の研究者によって新しい技術が“今”を変えていきます。そして、人工知能のニーズは医療、介護、小売、運輸、災害支援、宇宙開発など多岐に渡ります。

仮想空間はアバターを利用してネット上で交流する“メタバース”に進化しました。通信では5Gに続く、“Beyond5G(6G)”は2030年頃と目されているようです。

シンギュラリティが本当にやってくるのか、それはいつか、不安もありますが、おそらく人類の進歩の歴史の中で、それは避けられないのではないかと思いました。

画像出展:「yahoo finance」

円の大きさは時価総額で、AI関連で500億ドル以上の会社を集めたものです。

何故か、”Meta”が入っていませんね。気になってさらに調べてみました。

画像出展:「Linkedin」

こちらは2023年、全業種になっています。

やはりMeta(左下)はありました。

画像出展:「Yahooニュース」

米議会は9月13日、テスラのイーロン・マスクCEOのほか、メタ・プラットフォームズのマーク・ザッカーバーグCEO、アルファベットのスンダー・ピチャイCEOらテクノロジー業界の幹部を招き、人工知能(AI)に関するフォーラムを開催した。写真は、米議会で開かれたAIフォーラム(2023年 ロイター/Leah Millis)

『上院民主党トップのシューマー院内総務はフォーラムの冒頭「超党派のAI政策の基盤を整備するという巨大で複雑、かつ重要な取り組みをきょう開始する」と表明。「議会が役割を果たさなければ、AIの恩恵を最大化することも、AIのリスクを最小化することもできない」と述べた。 

また、とりわけディープフェイクについては優先的に対応し、2024年の選挙前に規制する必要性があると強調した。

フォーラムは非公開で開催。60人を超える上院議員のほか、エヌビディアのジェンスン・ファンCEO、マイクロソフトのサティア・ナデラCEO、IBMのアービンド・クリシュナCEO、マイクロソフト創業者のビル・ゲイツ氏らも参加した。』

ティム・クックのApple

多くの人がそう思っていたのではないでしょうか。スティーブ・ジョブズを失ったアップルの将来は厳しいだろうと。ところが実際にはそうはならず、アップルはより大きな企業になりました。その立役者はCEOのティム・クックです。

どんな人物なんだろうか?」、「スティーブ・ジョブズとティム・クックを結びつけたのは何だったのだろうか?」。特に後者は最も知りたい“謎”でした。

また、スティーブ・ジョブズの自伝にあった“こだわり”も気になりました。この点からも、何故、ジョブズはティム・クックだったのか知りたいと思いました。 

スティーブ・ジョブズ:2004年、パロアルトの自宅の仕事部屋にて
スティーブ・ジョブズ:2004年、パロアルトの自宅の仕事部屋にて

画像出展:「スティーブ・ジョブズⅡ」

僕は、いつまでも続く会社を作ることに情熱を燃やしてきた。すごい製品を作りたいと社員が猛烈にがんばる会社を。それ以外はすべて副次的だ。もちろん、利益を上げるのもすごいことだよ。利益があればこそ、すごい製品は作っていられるのだから。でも、原動力は製品であって利益じゃない。スカリーはこれをひっくり返して、金儲けを目的にしてしまった。ほとんど違わないというくらいの小さな違いだけど、これがすべてを変えてしまうんだ誰を雇うのか、誰を昇進させるのか、会議でなにを話し合うのか、などをね。スティーブ・ジョブズⅡp424](上記のメッセージはブログの2.「最後にもうひとつ……」の先頭に出ています)

ティム・クック
ティム・クック

画像出展:「ティム・クック 

著者:リーアンダー・ケイ二―

訳者:堤沙織

出版:SBクリエイティブ

発行:2019年9月

ブログは目次に続き各章のごく一部をご紹介していますが(黒字)、これ以外に印象的だったクックの成果として、[慈善活動に対する積極的な取り組み]、[再生可能エネルギーへの移行]など、スティーブ・ジョブズの時代には、消極的だったこれらの課題に対しても素晴らしい成果をあげられていました。

目次

序論 うまくやってのける

第1章 スティーブ・ジョブズの死

クックは取るに足りない人物

ジョブズが辞任し、クックがCEOに

スティーブ・ジョブズの死

スティーブ・ジョブズの会社を経営する

破滅する運命のアップル

第2章 アメリカの深南部で形作られた世界観

スウィートホーム・アラバマ

学生時代

早期のビジネス経験

ロバーツデールがクックの世界観を築いた

アラバマ行動主義のルーツ

故郷のアンチヒーロー

オーバーンで工学を学ぶ

第3章 ビッグブルーで業界を学ぶ

IBM PC

リサーチ・トライアングル・パークの工場

ジャストインタイム生産方式

クックの初めての仕事

クックの高い潜在能力

クックのMBA

早期の倫理規範

IBMのソーシャルライフ

IBMでの昇進

インテリジェント・エレクトロニクスに転職する

コンパックに合流する

第4章 倒産寸前の企業に加わる、一生に一度の機会

意見の一致:クック、ジョブズに出会う

オペレーションの新たなリーダー

さよなら、アメリカ。こんにちは、中国!

第5章 アウトソーシングでアップルを救う

フォックスコン

とんとん拍子に出世する

マネージャーとしてのクック

第6章 スティーブ・ジョブズの後を引き継

ピノキオ並みの硬さ

初期の挫折

採用と解雇

アップルは全盛期を過ぎたのか

クックはアップルの変革を始める

サプライチェーンにおける取り組み

成功の兆し

第7章 魅力的な新製品に自信をもつ

脱税

MacProとiOS7

iPhone 5Sが記録を打ち立てる

良い年末

世界開発者会議―iOS8と健康部門への参入

アンジェラ・アーレンツティム・クックのティム・クック

驚くべきパートナーシップ

IBMとのパートナーシップ―法人向けiOS

iPhone 6とApple Pay

iOS 8.0.1の厄介なバグ

Apple Pay

クックの初の主要製品:Apple Watch

第8章 より環境に優しいアップル

汚染と中毒

良い方向へ進む

ダーティな仕事に取りかかる

環境保護庁の門をたたく

善行を促進する力

クックは太陽光発電に力を注ぐ

クローズドループのサプライチェーン

持続可能な森林

ひたむきなCEO

第9章 クックは法と闘い、勝利する

プライバシーの問題

サンバーナーディーノ

長期にわたる論争

抗議の嵐

作戦指令室

アメリカにパライバシーは存在しない

訴えを取り下げる

クックはプライバシーを強化する

第10章 多様性に賭ける

パーソン・オブ・ザ・イヤー

平等と多様性はビジネスの役に立つ

多様性による革新

女性を昇進させる

アップルの組織構成

株主からのプレッシャー

教育におけるクックの取り組み

早いうちに種をまく

アクセシビリティ

第11章 ロボットカーとアップルの未来

未来の取り組み

アップル・パーク

キャンパスがオープンした日

すべてが成功したわけではない

協調を促す

うまくいっているようだ

次世代iPone、Xの到来

第12章 アップル史上最高のCEO?

クックは革新できるのか?

革新には時間がかかる

教訓を得る

第1章 スティーブ・ジョブズの死

破滅する運命のアップル

・2014年9月:チャーリー・ローズ[ニュースキャスター]とのインタビュー

『クックはジョブズが残したものを何とかして維持し、自分の持つすべてを会社に注ぎ込むことを望んでいた。しかし、ジョブズの真似をしようと考えたことはなかった。「自分がなれるのは、自分自身だけだということを理解しています」と彼は続けた。私は最高のティム・クックになるように努力しているのですそして、これこそが、彼の成し遂げたことだった。

第2章 アメリカの深南部で形作られた世界観

学生時代

・ロバーツデールは典型的な南部アメリカの田舎町。面積はわずか13平方キロメートル。当時の人口は約2300人(現在は約5000人)。

・クック家は信仰に篤く、クリスチャンである。

・幼い頃に、バプテスト教会で洗礼を受けてから、信仰は人生の大きな部分を占めてきた。

・クックは控えめで向上心が高く、常に成績優秀な生徒だった。知的で穏やかな性格でユーモアのセンスもあった。

・『彼がアップルで実践した価値観の多くは、子どもの頃に経験した差別と直接結びついているようだ。2013年、デューク大学フュークア・スクール・オブ・ビジネス(クックはここで修士号を取得している)で行われた学生向けの講演会で、クックは、キング牧師とケネディ大統領の2人が子どもの頃からのヒーローだと語っている。「私は南部で生まれ育ち、成長の過程で、差別が引き金となった最悪の行動の数々を目にし、非常に気に病む思いをしてきましたと、彼は学生たちに語った。だからこそ、命がけで差別と戦ったキングとケネディを、心から尊敬しているのだろう。』

オーバーンで工学を学ぶ

・『「アラバマ大は医師や弁護士を志望する富裕層が行くところだったので、自分を労働者階級の1人だととらえていた私には適さないと思いました。そして労働者階級の人々は、オーバーンへ行っていたのです」』

・クックが学んだ生産工学は、複雑なシステムを最適化する方法に焦点を置き、無駄な支出を取り払い、資源を最大限活用する最善策を見つけ出す学問であった。

・クックは2010年、オーバーン大学の卒業式のスピーチで、オーバーン大学の理念を自分の信念として話しているが、それは次のようなものである。『「私はここが、実践的な世界であると信じており、ゆえに、自分が培ったもののみが信頼に値すると考えている。したがって私は、働くこと、ひときわ懸命に働くことの価値を信じる。私は、正直であることと、誠実であることの価値を信じる。それなしでは、仲間の尊敬と信頼を勝ち取ることはできない」。』

・クックは1982年にオーバーン大学を卒業、アンダーセンコンサルティング(現アクセンチュア)とゼネラル・エレクトリックからもオファーを受けていたが、IBMに入社(PC部門)した。

アラバマ州ロバーツデール
アラバマ州ロバーツデール

画像出展:「WikipediA 

アラバマ州ロバーツデールは、2010年の国勢調査では人口5,276人、1,951世帯だったそうです。

オーバーン大学
オーバーン大学

画像出展:「海外留学推進協会 

大学のあるオーバーン地区は、アトランタから車で1時間30分ほど離れたところにあります。創立は1856年、学生数約30,000人の州立大学です。

公式ホームページ

第3章 ビッグブルーで業界を学ぶ

クックの高い潜在能力

・IBM入社数年後、クックは工場の経営幹部によって選ばれる「ハイポ(ハイ・ポテンシャル)」と呼ばれる将来を担う25名の若手社員リストのランキング1位にいた。なお、「ハイポ」に求められるものは、業績、責任感、リーダーとしての潜在能力など。

・『クックがハイポ・リストの一角を獲得し、最終的にはIBMでの高い地位[パーソナル・コンピューター事業北米ディレクター]を確立するまでになったのは、高校と大学を通して彼が培った労働倫理のおかげだった。工場におけるパーソナル・コンピューター製造の元責任者で、かつてクックの上司だったこともあるレイ・メイズも、クックが同僚たちの中で抜きんでていたことに同意している。「私が感じていた彼の優れたところは、その労働倫理でした」とメイズは語った。』

早期の倫理規範

・ビジネスで“倫理”というと、不正会計やインサイダー取引を連想するものだが、クックの“倫理”はそのようなものではない。

・『2013年、デューク大学で行われた同窓会[デューク大学のFuqua School of Businessを1988年に卒業]で、クックはこのように語った。

倫理について考えるとき、私はある物事を、それを発見したときよりも良い状態で、後に残すことを考えます。そしてこのことは私にとって、環境への配慮から、労働問題を抱えるサプライヤーとの付き合い方、製品の二酸化炭素排出量、何を支援するかという選択、そして従業員の扱い方まで、すべてに関わることなのです。私のすべての言動は、この考え方がもとにあるのです」。

倫理学の講義によって、彼は同じ業界の人の多くとは異なる方法でビジネスを考えるようになった。彼がそこで学んだ教訓 ―発見したときよりも良い状態で、物事を後に残すこと。環境に配慮し、従業員に敬意をもって接すること― は、彼の信念の支えとなり、アップルCEOとしての任期を象徴するものとなるだろう。彼はIBMで、アップルにおけるリーダーシップの基礎となるものを築き始め、そこには同僚との交流も含まれていた。』

江戸切子
江戸切子

画像出展:「江戸切子協同組合 

私事ですが、早大サッカー部時代に「伝統とは、前年をひとつでも上回る成果を上げ、積み重ねていくこと」と教わったことを思い出しました。

この日本流の伝統は、クックの信念の支えとなった“倫理”とスティーブ・ジョブズが願っていた、“いつまでも続く会社”につながるキーワードではないか、ジョブズとクックを結んだ最も重要な価値観だったのではないかと思いました。

つまり、私が最も知りたかった“謎(二人を結んだもの)”とは、“伝統を重んじる心だったというのが私なりの答えです。

第4章 倒産寸前の企業に加わる、一生に一度の機会

意見の一致:クック、ジョブズに出会う

・『ティム・クックは、アップルのリクルーターからオファーをすでに何度も断っていた。彼らの粘り強さが実を結ぶときがきた。最終的に、彼は少なくともジョブズには会うべきだという結論に達したのだ。「スティーブは、私がいる業界のすべてを作った人物でした。とても会ってみたかったのです。クックは2014年、チャーリー・ローズに対してこう暴露している。

彼はコンパックでの仕事に満足していたが、ジョブズとの出会いは新鮮でエキサイティングな将来の展望を彼に与えてくれた。ジョブズは「他の人とは全く異なることをしていました」とクックは当時を振り返った。その最初の面接で、ジョブズのアップルに対する戦略とビジョンを座って聞いていたとき、彼はそのミッションにおいて自分が価値ある貢献をできるということに納得した。ジョブズはコンピューター業界を震撼させることになるだろう製品や、いまだかつてないコンピューターのデザインコンセプトについて説明した。これらの構想は、丸くふくらんだ形のカラフルなMacintoshであるiMac G3となって、1998年に発売され大成功をおさめ、デザイナーであるジョニー・アイブを一躍有名にした。

クックは好奇心をそそられていた。「彼はそのデザインについてほんの少ししか話しませんでしたが、それだけで十分、私は関心を持ちました。後のiMacとなる製品について説明してくれたのです」。クックはその面接が終わる頃には、ジョブズのようなシリコンバレーの伝説と働くことは、一生ものの栄誉」になることを確信していた。

第5章 アウトソーシングでアップルを救う

とんとん拍子に出世する

・入社4年後の2002年に、ワールドワイドセールスならびにオペレーション担当副社長になった。

・2004年にはMacintoshのハードウェア部門の責任者になり、2005年にはCOOに任命された。

COOの昇進を機に、ジョブズはクックを自らの後継者として育て上げていった。アップルに勤めるすべての社員はスペシャリストだが、ジョブズとクックだけは違っていた。

マネージャーとしてのクック

・ジョブズとクックは何年もの間緊密に協力しながら働いてきたが、立ち振る舞い、気質、特にマネジメントは全く違っていた。

・『彼が声を荒げることはほとんどなかったが、問題の核心に迫ることに執着し、質問を延々と投げかけて人々を疲弊させた。「彼はとても静かなリーダーです」とジョズウィアックは語った。「叫ぶことも怒鳴ることもなく、非常に冷静で落ち着いています。しかしとにかく人を質問攻めにするので、部下たちは問題についてしっかりと把握しておく必要があるのです」。質問をすることで、クックは問題を掘り下げることができ、スタッフに自分がしていることを常に把握し、責任感を感じさせる効果があった。彼らはいつでも説明を求められる状況にあることを理解していた。

1998年12月に、クックのオペレーション担当グループに参加したスティーブ・ドイルは次のように語った。「彼は10の質問をしてきます。それらに正しく答えると、さらに10の質問をしてきます。それを1年経験すると、彼の質問は9つに減ります。しかし1つ間違えれば、質問は20、30と増えていくのです」。』

・クックは日曜日の夜に電話会議を受け、午前3時45分にメールの返信を行い、毎朝午前6時までには自分のデスクについていた。そしてオフィスで12~13時間働き、家に帰ってからはもっと多くのメールに返信した。

・クックは中国に行き、16時間の時差をものともせずに3日間働き、午前7時にアメリカに戻り、8時30分からの会議に出席することは珍しいことではなかった。

・オフィスにいない時のリラックス方法は、ジムに出かけるかロッククライミングをすること。また、熱心なサイクリストであり、土日はよく自転車に乗っているため、そのときだけは同僚はメールを気にせずにすんだ。

・クックは自分の健康状態を非常に気にかけていて、混雑する時間帯を避けるため、他の人より早起きしてジムに行っている。

・『彼は仕事とスポーツを同等のものと見なして次のように語っていた。「ビジネスにおいては、スポーツと同様に、勝利のほとんどはゲームの開始前に決定されているのです。我々は、好機がやってくるタイミングを整えることはできませんが、準備を整えておくことはできるのですクックの準備へのこだわりは、アップルにおける彼の成功の鍵である

・クックの最初の12年間のキャリアは比較的目立たないものだったが、クックは匿名でいることを重要視し、アップルの秘密のカーテンの後ろに隠れたままでいた。

第6章 スティーブ・ジョブズの後を引き継ぐ

成功の兆し

・2012年12月、クックは「タイム」誌の“世界で最も影響力のある100人」に選ばれたが、この記事の中で、アップルの元副社長で、2003年からは取締役を務めていたアル・ゴア[ビル・クリントン大統領時代の副大統領]は、クックに関して次のように記している。

『「伝説的存在であるスティーブ・ジョブズの後を継いで、アップルのCEOになること以上に難しい挑戦を私は知らない。しかし、アラバマ造船所の労働者と主婦の間に生まれ、穏やかで謙虚、物静かだが熱心な性格のティム・クックは、少しも動じることがなかった。ジョブズの残したものを守り抜き、アップルの文化に深く浸っている51歳のクックは、主要な方針転換を円滑かつ見事に実施しながら、世界で最も価値ある革新的な企業を、さらなる高みへと導くことに成功した。彼は、その複雑な社内構造の管理から、新たな「とてつもなく素晴らしい」テクノロジーおよびデザインの飛躍的進歩を製品パイプラインに落とし込むことまで、アップルのあらゆる分野において、自らのリーダーシップを強く発揮している」。』

第7章 魅力的な新製品に自信をもつ

世界開発者会議―iOS8と健康部門への参入

・2014年の世界開発者会議(WWDC)で新しいiOS8の発表に加え、HealthKitと組み合わせた健康管理アプリによって、1兆ドル規模のヘルスケア業界(健康とウェルネス分野)への参入を発表した。

画像出展:「biotaware 

Apple ResearchKit, HealthKit and CareKit, Health App – what does it all mean?

英語のサイトですが、Googl翻訳に助けて頂き、それぞれの概要をお伝えします。

HealthKit(アイコンは左端)

HealthKitは、ヘルスケアアプリとフィットネスアプリを格納するために設計されたフレームワークであり、それらを一緒に使用してデータをすべて1か所で照合できます。

ResearchKit(アイコンは左から2番目)

ResearchKitは、医学研究専用に設計されたオープンソースソフトウェアフレームワークです。ResearchKitを使用すると、医学研究者はアプリを迅速かつ最終的に開発し、このフレームワークから開発されたアプリを通じて有意義で価値のあるデータを取得できます。

CareKit(アイコンは右端)

CareKitは新しいソフトウェアフレームワーク(2016年4月にリリース)であり、これにより、開発者は、医療を追跡して管理する医学に特化したアプリを構築できます。作成されたアプリは、患者が自分の病状をよりよく理解して自己管理できるようにすることを目的としています。これは、たとえば、服用した薬の効果を追跡するのに役立ちます。

クリック頂くと株式会社C2さまの”ResearchKit/CareKit”のサイトに移動します。

『C2では、ResearchKitアプリおよびCareKitアプリの開発をお手伝いします。企画、要件定義、画面設計、開発 (アプリ&サーバ)、Appストア配信までをワンストップでサポートいたします。』

なお、事例として、京都大学さま、順天堂大学さま、国立がん研究センターさま等が紹介されています。

クックの初の主要製品:Apple Watch

・『アップルの幹部たちは、ジョブズの死から数週間後、ブレーンストーミングを始めた。つまりこの時計のアイデアは、スティーブの死から間接的に生まれたものだと言うことができる。「最初のディスカッションは、スティーブが亡くなった数カ月後2012年初めに行われました」とアイブは語った。「それには時間がかかりました。我々がどこに行こうとしていたのか、企業としてどんな軌道に乗っていたのか、そして何が我々のモチベーションとなっていたのかを、皆でじっくりと考えたのです」。そうして生まれたのがApple Watchだった。』

・これをみてスティーブ・ジョブズの伝記に書かれていた文章を思い出しました。 

Stay Hungry, Stay Foolish.
Stay Hungry, Stay Foolish.

画像出展:「homestead 

『僕が病気になってある意味良かったと言えることは少ないけど、そのひとつが、リードが優れた医師とじっくりいろいろな研究をするようになったことだ。21世紀のイノベーションは、生物学[biology]とテクノロジーの交差点で生まれるんじゃないかと思う。僕が息子くらいのころデジタル時代がはじまったように、いま、新しい時代がはじまろうとしているんだ」

第8章 より環境に優しいアップル

クローズドループのサプライチェーン

・2016年3月、アップルはiPhone6を分解するリアム(Liam)というロボットを発表し、クローズドループのサプライチェーン(製品の製造をリサイクルされた原料のみで行うこと)に向けた大きな一歩を歩み出した。現在、2機のリアムはアメリカとオランダに1機ずつあり、11秒ごとにiPhoneを完全に分解している。

Liam
Liam

第9章 クックは法と闘い、勝利する

クックはプライバシーを強化する

・2018年4月に発表されたiOS11.3はプライバシー保護に強化を加えているが、このアップデートには、ユーザーの個人データがアップルのサービスによって収集されていることを明確に示すアイコンが追加された。アップルが個人情報を収集するのは、機能を有効にする必要があるときや、サービスを保護するとき、またはユーザー体験をパーソナライズする必要があるときだけである。

・アップデートしたユーザーへの通知は次のような説明がされていた。『「アップルはプライバシーを基本的人権だと考えているため、すべてのアップル製品はデータの収集と使用を最小限に抑え、可能な限りデバイス上で処理し、お客様の情報に対する透明性と管理を提供するよう設計されています」。』

第10章 多様性に賭ける

・クックは同性愛者である。この表明は2014年10月30日、ブルームバーグに掲載された「ティム・クックは語る」という感動的なエッセイの中で行われた。また、表明した理由など心に残るメッセージがある。

・『「私は自分自身がゲイであるおかげで、マイノリティであることの意味をより深く理解することができ、他のマイノリティグループに属する人々が日々直面している課題についても考えることができるようになったのです」。』

・『CBSの「ザ・レイト・ショー」に出演したクックは、自分がアメリカのセクシャアル・マイノリティの若者たちを助けることができると気づいてから、自らのセクシャリティを公表することを決めたと語った。「子どもたちは学校でいじめられ、その多くは差別され、両親から拒絶されています。私が何とかしなければならないと感じたのです」と彼は語った。「私は自分のプライバシーを非常に重視していましたが、他の人のために何かすることのほうが、それよりもはるかに重要と感じたのです。皆さんに私の真実を伝えたいと思いました」。』

第11章 ロボットカーとアップルの未来

未来の取り組み

・タイタンと呼ばれるプロジェクトは、Apple Carという自動運転車に関するもので2014年にクックが承認したプロジェクトである。そのきっかけはジョブズが、当時大きな話題となっていた、テスラモーターズの新たな電気自動車に興味をもった2008年にさかのぼる。(ジョブズは当時の自動車業界の状況から自動運転車を追及しない決断をくだしている)

・『2017年6月、クックはプロジェクト・タイタンについて初めて公に語り、ブルームバーグに対し、「自動運転システムに焦点を合わせている」ことを認めた。「これは、我々が非常に重要視する核となるテクノロジーです」。そしてクックはこう付け加えた。「我々は、これをすべてのAIプロジェクトの母であると考えています。おそらく現存するAIプロジェクトの中で、最も難しいものの1つです」。』

・タイタンの問題は製品開発だけでなく、雇用やマネジメント、そしておそらくビジョンにおいても失敗していると評価されており、軌道に乗っているのかいないのかさえ明らかになっていない。

Appleが自動運転車を開発していることは全く知らず、大変驚きました。しかし、その”タイタン”と呼ばれているプロジェクトは苦戦していることを知りました。

そこでネット検索してみると、【Patently Apple】という、Appleの知的財産(IP)や最新のニュースを発信するブログ(英語)があり、”タイタン”に関しても色々なニュースが掲載されているのを知りました。

Project Titan, Vehicle Technology 

第12章 アップル史上最高のCEO?

革新には時間がかかる

・クックのもとで発売された最初の新ジャンルの製品であるApple Watchは、当初は不信感をもって迎いられ、一笑に付されることもあり、初期の評価は面白いおもちゃではあるが、世界を変える製品ではないというものあった。しかし3年後、Apple Watchはスマートウォッチ市場で最大の勢力となり、スイスの時計業界全体よりも大規模となっていた。

・Apple Watchは、アップルの健康とウェルネスに対する熱意を形にしたプラットフォームであり、HealthKitやResearchKitのようなソフトウェアによって、着用者が自分の健康とフィットネスをモニターし、改善するのをサポートする手首装着型コンピューターの基礎を築いている。

こちらは、”お茶の水循環器内科さま”のサイトです。2020年9月7日に「アップルウォッチ外来」を開始されたとのことです。

『お茶の水循環器内科ではアップルの「家庭用心電計プログラム」「家庭用心拍数モニタプログラム」が医療機器承認を受けて、アップルウォッチ外来を開始しました。具体的には、不整脈の発作時の記録をもとに、不整脈の疑いの評価、さらなる精密検査の必要性、治療の必要性等を相談するものです。』

付記

「スティーブ・ジョブズとティム・クックを結びつけたのは何だったのだろうか?」。特に後者は最も知りたい“謎”でした。

この疑問に対する自分なりの答えは以下のようなものでした。

《この日本流の“伝統”は、クックの信念の支えとなった“倫理”とスティーブ・ジョブズが願っていた、“いつまでも続く会社”につながるキーワードではないか、ジョブズとクックを結んだ最も重要な価値観だったのではないかと思います。つまり、私が最も知りたかった“謎(二人を結んだもの)”とは、“伝統を重んじる心”だったというのが私なりの答えです。 

読み終わってみて、ジョブズとクックを結んだのは、もう一つ、幼少期の体験を通して”研ぎ澄まされた精神が潜在的に共鳴した”からではないかと思います。

労働階級の家に育ち、両親からの愛情に心をよせ、加えてジョブズは養子をバネに、一方クックは差別の多い南部の田舎町に住み、自分自身がセクシャルマイノリティであったことをバネに、強い気持ちや揺るぎない信念(ジョブズは父親譲りの完璧な物づくり、クックは確固たる倫理感)を醸成したのだと思います。

量子コンピューター誕生

量子超越(quantum supremacy)というのは、「量子コンピューターで従来のコンピューターにはできない計算をする」という意味の造語だそうです。

量子コンピューターが世界最速のスパコン(スーパーコンピュータ)を凌駕したという【量子超越】のニュースは、前々回のブログ“スマート・クリエイティブ”の中でご紹介しましたが、このGoogle の量子コンピューターのことは、日経サイエンスで特集されていました。

日経サイエンス 2020年2月号
日経サイエンス 2020年2月号

日経サイエンス 2020年2月号

出版:日経サイエンス

発行:2020年2月

量子コンピューターはたった53個の素子で世界最速のスパコンを超える計算を実行した。この計算能力を生かせるキラーアプリケーションの発見を目指して世界中で競争が始まっている。

画像出展:「日経サイエンス」

「前」世界最速のスパコン

米国立オークリッジ研究所にあるスパコン

サミット

・台数(ノード数):4608

・CPU数:9216

・メモリ:10PB(ペタバイト)

・ストレージ:250PB

・OS:Linux

 

2020年6月22日に富士通/理化学研究所の“富岳”が世界1位になったという発表がありました。

富岳
富岳

画像出展:「日本経済新聞

富岳

・台数(ノード数):158,976

・CPU(コア)数:8,266,752

・メモリ:4.85PiB(ぺビバイト)

・ストレージ:150PB

・OS:Linux 

スーパーコンピューター:歴代1位と1秒間の計算回数
スーパーコンピューター:歴代1位と1秒間の計算回数

画像出展:「日本経済新聞

性能比較

Google 社の量子コンピューター(53個の超電導量子ビット)

Google社の量子コンピューターのチップの中身
Google社の量子コンピューターのチップの中身

画像出展:「日経サイエンス」

チップの中身

量子コンピューターチップには、53個の超電導量子ビット(右)が格子状に並び、接続を制御する接続器でつながっている。1つ抜けているのは(上段中央の白いチップ)壊れて動作しなかったため。

 

 

この特集は技術的な解説が中心ですが、難解ということもあり、私の関心は“これからの見通し”と“量子コンピューターの扉を開けたのは誰か”という2点です。 

前者は、「量子コンピューターが近い将来に世界を変えることはない。これは現在の量子コンピューターが計算できるのは特殊なものに限定されており、科学者や産業界が期待する実用的な計算ができるようになるかどうかは未知数である」ということでした。

東京大学の中村泰信先生は、『「今の延長で、2~3年のうちにおそらく200量子ビット程度まではいけると思う」』、とお話されています。

また、本誌には2つの視点から今後の課題が書かれています。

各ビットを制御するために必要な膨大な配線をどう処理するかが大規模化の課題になるという。よく巨大なシャンデリアのような量子コンピューターの写真を見かけることがあるが、あれは中心にある量子チップを冷やす冷凍機で、無数の金属線はそのチップの素子を制御する配線だ。』

エラーを訂正しながら計算が続けられる量子コンピューターを実現するにはあと20~30年かかると、研究者の多くはみている。それまではエラー耐性量子コンピューターを目指しつつ、エラー訂正できない小規模な量子コンピューター(これをNISQ[Noisy Intermediate-Scale Quantum device]と呼ぶ)で何か面白い計算ができないかを探索する研究が進むだろう。』

量子コンピューターは極めて興味深い技術革新ですが、まだまだツボミ、満開になるまでにはかなりの月日を要するようです。

日経サイエンス
日経サイエンス

画像出展:「日経サイエンス」

左はマルティニス教授(2017年12月、グーグル研究所)

 

 

後者の“誰が量子コンピューターの扉を開けたのか”という疑問は、オックスフォード大学の物理学教授、ディヴィッド・ドイッチュ(David Deutsch)先生というのが答えでした。日経サイエンスの記事の中にも誕生までの経緯に関するお話が出ていましたので、そちらをご紹介します。 

ディヴィッド・ドイッチュ
ディヴィッド・ドイッチュ

この写真はドイッチュ先生のホームページから拝借しました。

 

 

 

・量子的に動作するコンピューターというアイデアが初めて注目を集めたのは1981年5月、IBMの計算機科学者ランダウア―(Rolf Landauer)が主催した「第1回物理と計算の国際会議」である。会議には著名な物理学者のファインマン(Richard Feynman)が招かれ、計算機による物理コミュニケーションについて講演した。そして「(量子力学以前の)古典力学を扱う解析はどれもうまくいかない。自然は古典力学では動いていないので、シミュレートするなら量子力学的にやるべきだ」と結論し、量子コンピューターの必要性を予言した。

・『ドイチュが1985年に量子コンピューターの動作を定式化した論文を出したときには、「反響はほとんどなかった」という。量子的な重さね合わせは今でこそ計算のリソースと捉えられているが、当時は量子力学を構成する理論上の枠組みだと思われていた。そんな実体のないものに情報を保存して計算するというのは突拍子もない話で、しばしば「幽霊を使って計算するコンピューター」と評された。

だが量子コンピューターの理論に関心を持つ人はじわじわと増えていった。1994年にベル研究所のシェア(Peter Shor、現マサチューセッツ工科大学)が量子コンピューターによって巣因数分解を桁違いの高速で解くアルゴリズムを提唱すると状況は一変し、大勢の研究者が流入して、第1次の量子コンピューターブームが起きた。

※ご参考:量子論および「重さね合わせ」についての簡単な説明は、ブログ“スマート・クリエイティブ”の前半にあります。

1982年ごろ、英オックスフォード大学のポスドク、ドイッチュ(David Deutsch)は、それまで数カ月にわたって進めてきた計算を終え、ひとつの結論にたどり着いた。今まさに理論を完成しつつある新しい計算機「量子コンピューター」は、まったく新しい計算をする。

「それは特別な瞬間だった」とドイッチュは振り返る。「量子コンピューターの理論は、新しい計算の理論だとわかった」。 

1985年7月ドイッチュは量子コンピューターの理論を論文として発表し、その中でこう書いた。

「いつの日か量子コンピューターを作ることが技術的に可能になるかもしれない。おそらくは超電導回路の量子で」

34年後の2019年10月、グーグルの量子AIグループを率いるマルティニス(John Martinis)らが、超電導回路を使った量子コンピューターで、世界最速のスパコンで1万年かかる実験を200秒で実行したとNature誌に発表した。そしてこの劇的な加速によって「量子超越」が実験的に示されたと宣言した。

・マルティニスはカリフォルニア工科大学で行った講演でこう語った。「量子超越は、ソロバンから最先端のコンピューターまで、あらゆる計算機は同じクラスの計算をするという【拡張チャーチ・チューリングのテーゼ】への反論だ。量子コンピューターは、新しいクラスの計算をするデバイスなのだ」。ドイッチュの予想は30年余りを経て、マルティニスによって現実のものとなった。

※IBM社の反論:Googleが世界で初めて実証した「量子超越性」にIBMが反論、量子コンピューターはシミュレートできるのか?” こちらはGigazineさまの記事になります。

※Google 社の計画:米グーグルが量子コンピューターの野心的計画、10年以内に「万能」目指す” こちらは日経XTECHさまの記事になります。

画像出展:「日経XTECH」

左下を見ると、”Google AI Quantum"とあります。そこで検索してみるとGoogle Researchというページを見つけました。

 

 

 

画像出展:「Google Research」

こちらはGoogle Researchにあった”Quantum”というページです。左の絵は”The Question of Quantum Supremacy”につながります。また、”Quantum”のページには次のような説明が出ていました。『A research effort from Google AI that aims to build quantum processors and develop novel quantum algorithms to dramatically accelerate computational tasks for machine learning.』

卓越した才能をもったドイッチュ先生の著書の中に、「無限の始まり」という著名な本があることを知りました。

論外の難しさであるのは間違いなく、ページ数も600ページを超える大作のため買うつもりは全くなかったのですが、幸いにも、図書館に所蔵されていることを見つけました。

パラパラとページをめくっていると、400ページの“時間とは「もつれ」現象である”という見出しに続いて、量子コンピューターに関する記述がありました。ブログではその冒頭の部分をご紹介します。

著者:ディヴィッド・ドイッチュ
無限の始まり

著者:デイヴィッド・ドイッチュ

出版:合同出版

発行:2013年11月

 

こちらは原書です。発行は2012年1月でした。

『物理学における私の研究テーマのいくつかは、「量子コンピューター」の理論に関するものだ。量子コンピューターでは情報を伝える変数があの手この手で守られ、周囲ともつれを起こさないようになっている。そうすることで、情報の流れを単一の歴史に限定しない新たな計算モードが実現されている。あるタイプの量子計算では、同時に行われる膨大な数の異なる計算が互いに影響を及ぼし合い、ひいては一つの計算の結果に寄与する。このことは「量子並列性」と呼ばれている。

一般に、量子計算では情報の個々のビットを「キュービット(量子ビット)」と呼ばれる物理的物体で表す。キュービットを物理的に実現する方法はいくつもあるが、二つの不可欠な特徴をかならず備えている。一つは、個々のキュービットに離散的な二つの値のどちらかをとれる変数があること、もう一つは、キュービットをもつれから保護する特殊な措置―キュービットを絶対零度近くまで冷やすなど―が講じられていることだ。量子並列性を用いる典型的なアルゴリズムではまず、キュービットのいくつかで、情報を伝達する変数に両方の値を同時に獲得させる。ここで、キュービットをまとめて(たとえば)数を表す一時記憶(レジスター)と見なせば、レジスターとしてのさまざまな実在の数は、キュービット数の二乗という指数関数的な大きさになる。そして、一時的に古典的な計算が行われ、そのあいだに分化の波がほかのキュービットのいくつかへと広がる―だが、それ以上は広がらない。そうならないような措置が講じられているからだ。ゆえに、情報は膨大な数の自律的な歴史それぞれのなかで別個に処理される。最後に、影響を受けるすべてのキュービットが絡む干渉プロセスによって、数々の歴史に含まれる情報が単一の歴史にまとまる。中間段階の計算が存在し、情報はそこで計算されているため、先ほど議論した単純な干渉実験[多宇宙における情報の流れに関するもの]の場合とは違って、最終状態は初期状態と同じではなく、図13に示すように初期状態の関数となる。

画像出展:「無限の始まり」

 

 

 

宇宙船の乗組員は自分のドッペルゲンガー[分身]と情報を共有し、一つの関数を異なる入力に対して計算することによって大量の計算をやってのけたが、量子並列性を利用するアルゴリズムでもまさに同じことをする。だが、先ほどの架空の計算は、プロットに合わせていろいろ創作できる宇宙船の規則の制約しか受けなかったのに対し、量子コンピューターは量子干渉をつかさどる物理法則の制約を受ける。多宇宙の助けを借りて実行できるのは、決まったタイプの量子計算しかない。そしてそのタイプでは、最終結果に必要な情報を単一の歴史にまとめるうえで、たまたま量子干渉の数字が最適なのである。

この手法による計算では、わずか数百キュービットの量子コンピューターでも、観測可能な宇宙に存在する原子よりはるかに多い数の計算を並列に実行できる。本書の執筆時点[2011年頃]で製作されている量子コンピューターのキュービット数は10だ。この数の「拡張」は量子テクノロジーにとってたいへん難関だが、徐々に実現しつつある。』

ご参考:”量研(QST)における量子生命科学研究

上記をクリック頂くと、量子科学技術開発機構さまの資料(PDF19枚)がダウンロードされます。図、写真、表などが多く含まれた親切な資料です。

付記:”量子技術にまい進する中国--第14次5カ年計画にみるその野望

こちらは、2021年3月30日付のZDJapanさまの記事です。

『~中国はその中でも量子コミュニケーションに対する果敢な取り組みを続けており、さらなる加速に向かってまい進している。中国はその計画の目標の1つとして、古典的な通信テクノロジーに匹敵する長距離高速量子通信システムの開発を挙げている。~』

付記:”IBMが量子コンピューター分野の開発者認定資格をスタート--その背景と意義

こちらは、2021年4月15日付のZDJapanさまの記事です。

『~この認定資格は、IBMの量子コンピューティング用ソフトウェア開発キット(SDK)である「Qiskit」を利用することにフォーカスしたものだ。QiskitはPythonスクリプトをベースとするオープンソースプラットフォームで、これを利用すれば、量子アルゴリズムの実験から、クラウドベースの量子デバイスでのコードの実行まで、量子コンピューターを使ったさまざまな実験を行うことができる。~』

付記:”グーグル、新たな量子コンピューター研究拠点「Quantum AI」キャンパス披露

こちらは、2021年5月19日付のZDJapanさまの記事です。

『~Googleが新たに大規模な量子コンピューティング研究センターを開設したことを明らかにした。カリフォルニア州サンタバーバラにあり、数百人のスタッフを雇用する予定だ。このキャンパスには、Googleの最初の量子データセンター、量子ハードウェア研究ラボ、量子プロセッサーチップファブリケーション施設がある。すでに一部の研究者やエンジニアが働いているという。~』

付記:”NVIDIA、日本の量子研究向け ABCI-Q スーパーコンピューターを支援

こちらは、2024年3月19日付のPRTIMESさまの記事です。

『~産業技術総合研究所  量⼦・AI融合技術ビジネス開発グローバル研究センター 副センター長の堀部雅弘氏は次のように話しています。「ABCI-Q を通じて、日本の研究者は量子コンピューティングについてより深く知り、実用的なアプリケーションのテストおよび開発を加速できるようになるでしょう。NVIDIA CUDA-Q プラットフォームと NVIDIA H100 により、量子コンピューティング研究の新たなフロンティアを探求する科学者を支援します」~』

付記:”NVIDIA、高速化された量子古典コンピューティングのための 新システムを発表

こちらは、2024年3月21日付のNVIDIA社からの発表です。

『~世界初の GPU アクセラレーテッド量子コンピューティング システムである NVIDIA DGX Quantum は、世界で最も強力なアクセラレーテッド コンピューティング プラットフォーム (NVIDIA Grace Hopper Superchip とCUDA Quantumオープンソース プログラミング モデルによって実現) と、世界で最も先進的な量子制御プラットフォームである Quantum MachinesによるOPX を組み合わせたものです。~』

スマート・クリエイティブ

今回のブログは“Google”に関するものです。「なぜ、Googleに興味をもったのか?」、かなり長い前置きになりますがお付き合いください。 

ほとんど関心のなかった自動運転ですが、たまたま入ってきた情報に反応してしまいました。それはグーグルが自動運転で他社を圧倒しているというものです。てっきり、今も五十歩百歩、横一線なのではないかと思っていたため、このニュースに意表を突かれた感じです。

検索してみると、素晴らしいサイトがありました。以下はそのサイトにあった2019年4月1日付の記事です。動画もあり、非常に詳しい紹介がされています。 

画像出展:「NEWS CARAVAN

Google傘下のWaymo、商用自動運転車を目指した10年の軌跡

『2018年に初めて自動運転を使った配車サービスを商用展開したのがWaymoです。Googleの親会社のアルファベットの傘下でWaymoは、前身のGoogle自動運転プロジェクトから10年もの歳月をかけてようやく、その技術を実用化させつつあります。

以下のグラフはワシントンポストのニュースにあったものです。“Rates of intervention”という見出しなので、自動運転技術の性能に関するものということだと思います。これを見るとGoogle は競合他社より2桁~3桁、精度が高そうです。 

画像出展:「ワシントンポスト

 

上記のグラフではTeslaが0になっていますが、下のグラフの補足を見ると、Teslaは公道での実験データを公表していないようです。また、公道でのテストデータに関してもGoogle の実績(距離)は他社を圧倒しています。

画像出展:「OFFICE31051

 

ところで、ご紹介した“NEWS CARAVAN”は、“世界中の最新のテクノロジーを扱ったニュースを配信するサイトです”とのことです。その内容は、FAANG(Facebook、Apple、Amazon、Netflix、Googleの頭文字)、AI、Maas/自動運転、サブスクリプションビジネス、IoT、ブロックチェーン・仮想通貨、フィンテック(Finance+Technology)、クラウド、フードテック(Food+Technology)、宇宙開発 の情報を扱っています。素晴らしい完成度です。

そういえば、Googleは量子コンピュータでもIBMと競っていたのを思い出しました。ということで、こちらも検索してみると驚きのニュースが見つかりました。 

画像出展:「CNET Japan

グーグルの「量子超越性」は革命の始まりにすぎない

『1981年に有名な物理学者、故Richard Feynman氏が言及し、Googleが13年間取り組んできた量子コンピューティングというアイデアが、現実に向かって動き出しているのである。』

 

 

下の記事はNewsweekのものです。

画像出展:「Newsweek

『グーグルの研究チームは、同社の量子コンピューターが、従来のスーパーコンピューター(スパコン)で約1万年かかる計算を「わずか数分」で解いたと発表した。』

『量子コンピューターは、量子力学の奇妙な原理を利用して計算を行う。従来型のコンピューターは「ビット」という情報単位を使っている。これは「0」か「1」のどちらかの状態しか表すことができないのに対し、量子コンピューターが使う情報単位「量子ビット」は、同時に「0」でも「1」でもあって、「0」と「1」の間のすべての値でもある。扱える情報量が大幅に増えるため、演算能力も大幅に高まるのだ。』

こちらの記事の中には英語ですが、コインの表裏を例にした説明動画があります。これは量子力学の奇妙な原理の一つ、「重ね合わせ」を説明するものです。

偉そうに説明できるような知識は持っていないのですが、過去ブログの“量子論1”に戻って少しご説明します。なお、ここでご紹介している内容および画像は、「13歳からの量子論のきほん」という本からです。

Newton:13歳からの量子論のきほん
Newton:13歳からの量子論のきほん

出版:ニュートンプレス

発行:2018年7月

 

 

量子論が生まれた理由

『あらゆる物質は、「原子」からできていることがわかっています。19世紀末ごろになって、原子がかかわる現象を詳しく調べてみると、ミクロな世界は私たちが日常生活で目にする世界とはまったくちがうことがわかってきました。ミクロの世界は私たちが日常生活で目にする世界とはまったくちがうことがわかってきました。ミクロな物質は、私たちの常識では説明できない、摩訶不思議なふるまいをするのです。

そこで、新しい理論が必要になりました。それが「量子論」です。量子論とは「非常に小さなミクロな世界で、物質を構成する粒子や光などがどのようにふるまうかを解き明かす理論」といえます。

量子論と日常生活の関係

『マクロな世界の物体の運動に量子論を適用すると、計算量が膨大になってしまいます。そこで実用上は、計算が楽な古典論が使われます。マクロな世界では、量子論による計算結果と古典論による計算結果が、ほとんど同じになるのです。なおマクロな世界にも、量子論を使わないと説明できない現象はあります。「金属(導体)」「絶縁体」「半導体」の性質のちがいや、「超流動」や「超電導」といった現象です。

量子論と自然界のサイズ
量子論と自然界のサイズ

量子論の二つの重要事項

波と粒子の二面性:“電子や光は、波と粒子の性質をあわせもつ”

状態の共存(重ね合わせ):“一つの電子は、箱の左右に同時に存在できる”

Newsweekの記事にあったコインの動画は、上記の「状態の共存(重ね合わせ)」を説明したものということになります。

以前、ネットで見つけた例えでは次のようなものもありました。

「道を歩いていたら、道が3つに分かれた。1番早く目的地に着ける道を選びたいが、選べるのは1つしかない。従って、結果的に1番早い道を選べる確率は1/3(約33.33%)である。

一方、量子の世界では、【重ね合わせ】という奇妙な原理のお陰で3つの道を同時に歩いて行ける。よって、1番早い道を選べる確率は100%である」。

「Google 恐るべし!!」

そこで、Google がどんな会社か知りたいと思い、“How Google Works(私たちの働き方とマネジメント)”という本を購入したという経緯です。

ブログは目次に続き、共同創業者であるラリー・ペイジの言葉と本書の骨子的なメッセージをお伝えし、続いてGoogle のDNAではないかと思われる“スマート・クリエイティブ”と“ラーニング・アニマル”、そして、イノベーションという章の中のテーマから、“自らとりまく環境を理解する”と“良い失敗をする”をご紹介します。

How Google Works
How Google Works

著者:エリック・シュミット、ジョナサン・ローゼンバーグ、アラン・イーグル

出版:日本経済新聞出版社

発行:2014年10月

 

 

目次は大見出しのみご紹介させて頂きます。

序文

はじめに

文化 自分たちのスローガンを信じる

戦略 あなたの計画は間違っている

人材 採用は一番大切な仕事

意思決定 「コンセンサス」の本当の意味

コミュニケーション とびきり高性能のルータになれ

イノベーション 原始スープを生み出せ

おわりに

序文

グーグルは「自律的思考」をあらゆる活動の基礎にしていた。それはぼくらの誇るすばらしい成功、そしてときにはとんでもない失敗の原動力となった。』 グーグルCEO兼共同創業者 ラリー・ペイジ

はじめに

楽しいプロジェクト

『本書は成功・成長している企業やベンチャーの発達過程をたどるような構成になっている。この発達過程は、雪玉が坂道を転がっていくうちに勢いがつき、どんどん大きくなっていくような、永続的な好環境に発展できるものだ。一連のステップは、スマート・クリエイティブを惹きつけ、意欲を高めるために企業が実践可能なものだ。その一つひとつが企業を次のステップへと押し上げていく。各ステップは相互に依存し、お互いの上に成り立っている。またどのステップも決して終わることのない、ダイナミックなものだ。

まずは最高のスマート・クリエイティブを惹きつける方法から始める。その出発点は企業文化だ。なぜなら企業文化とビジネスの成功は切り離して考えることはできないからだ。自分たちのモットーを信じられなければ、大成功はとうてい望めない。次に取り上げるのが戦略だ。スマート・クリエイティブは強固な戦略の土台に根差したアイデアに何より魅力を感じる。事業計画を支える戦略の柱こそが、事業計画そのものよりもはるかに重要だとよくわかっている。その次が採用だ。これはリーダーの最も大切な仕事である。最高の人材を十分に集めることができれば、知性と知性が混じり合い、クリエイティビティと成功が生まれるのは確実だ。

スマート・クリエイティブ

・こんにちの労働環境は、20世紀とは本質的に異なる。実験のコストは安くなり、失敗のコストもかつてよりは大幅に低くなった。そのうえ、データもコンピューティングのリソースも豊富になり、自由に使えるようになった。部署を越え、大陸や海を越えての協業も簡単にできる。こうした要素が組み合わさった結果、突如としてひとりのプレイヤー、マネジャー、経営者にいたるまで、働く人間がとほうもないインパクトを生み出せるようになった。

・IBM、ゼネラル・エレクトリック(GE)、ゼネラル・モーターズ(GM)、ジョンソン・エンド・ジョンソンなどの優れた企業は、有望な人材に2~3年ずつさまざまな部署を経験させる経営幹部養成トラックを設けている。だがこの仕組みは専門能力ではなく、経営能力を高めることを目的としている。この結果、従来型企業で働く知識労働者のほとんどは、専門分野に秀でているか、幅広い経営能力を備えているか、どちらかの能力に片寄っているのが普通である。

・従来型の知識労働者と、グーグルのエンジニアを比べてみると、まったく違うタイプであることがわかる。グーグルの社員は会社の情報やコンピューティング能力に自由にアクセスできる。リスクテイクをいとわず、またそうしたリスクをともなう取り組みが失敗したとしても処罰や不利益を受けることはない。職務や組織構造に束縛されることなく、むしろ自分のアイデアを実行に移すよう奨励されている。納得できないことがあれば、黙ってはいない。退屈しやすく、しょっちゅう職務を変える。多才で、専門性とビジネススキルと創造性を併せ持っている。私たちが「スマート・クリエイティブ」と呼ぶ新種で、インターネットの世紀での成功のカギを握る存在である。

こんにち成功している企業の際立った特色は、最高のプロダクトを生み出しつづける能力である。それを手に入れる道は、「スマート・クリエイティブ」を惹きつけ、彼らがとてつもない偉業を成し遂げられるような環境をつくりだすことである。

・スマート・クリエイティブは、自分の“商売道具”を使いこなすための高度な専門知識を持っており、経験値も高い。

・スマート・クリエイティブは、実行力に優れ、単にコンセプトを考えるだけでなく、プロトタイプをつくる人間である。

・スマート・クリエイティブは、分析力も優れている。データを扱うのが得意で、それを意思決定に生かすことができる。同時にデータの弱点もわかっており、いつまでも分析を続けようとはしない。データに判断させるのは構わないが、それに振り回されるのはやめようと考える。

・スマート・クリエイティブは、ビジネス感覚も優れている。専門知識をプロダクトの優位性や事業の成功と結びつけて考えることができ、そのすべてが重要であることをわかっている。競争心も旺盛である。成功にはイノベーションが不可欠だが、猛烈な努力も欠かせない。

・スマート・クリエイティブは、頂点を目指す意欲にあふれ、ユーザのこともよくわかっている。どんな業界に身を置いているかにかかわらず、スマート・クリエイティブはプロダクトを誰よりもユーザ目線、あるいは消費者の視点から見ることができる。自らが「パワー・ユーザ」で興味の対象に取りつかれたようにのめり込む。

・スマート・クリエイティブからは、斬新なアイデアがほとばしり出る。他の人とはまったく違う視点があり、ときには本来の自分とも違う視点に立つ。必要に応じて、カメレオン的に視点を使い分けることができる。

・スマート・クリエイティブは、好奇心旺盛である。常に疑問を抱き、決して現状に満足せず、常に問題を見つけて解決しようとし、それができるのは自分しかいないと確信している。傲慢に見えることもあるかもしれない。

・スマート・クリエイティブは、リスクをいとわない。失敗を恐れない。失敗からは常に大切なことを学べると信じているからである。あるいはとほうもない自信家で、たとえ失敗しても、絶対に立ち直り、次は成功できると思っている。

・スマート・クリエイティブは、自発的である。指示を与えられるのを待つのではなく、また納得できない指示を与えられたら無視することもある。自らの主体性にもとづいて行動するが、その主体性自体が並みの強さではない。

・スマート・クリエイティブは、あらゆる可能性にオープンである。自由に他社と協力し、アイデアや分析をそれ自体の本質にもとづいて評価する。

・スマート・クリエイティブは、細かい点まで注意が行き届く。集中力を切らさず、どんな細かいことも覚えている。それは勉強し、記憶するからではない。それが自分にとって重要だから、すべて知り尽くしている。

・スマート・クリエイティブは、コミュニケーションも得意である。一対一でも集団の前で話すときも、話がおもしろく、センスがよくてカリスマ性さえ感じさせる。

すべてのスマート・クリエイティブがこうした特徴を全部備えているわけではないし、実際そんな人間は数えるほどしかいない。だが全員に共通するのは、ビジネスセンス、専門知識、クリエイティブなエネルギー、自分で手を動かして業務を遂行しようとする姿勢だ。これが基本的要件だ。

・スマート・クリエイティブはどこにでもいる。社会階層や年齢、性別も関係ない。テクノロジーのもたらすツールを使って価値あることをしたいという、意欲と能力のある、あらゆる世代の志の高い人たちである。その共通点は努力をいとわず、これまでの常識的方法に疑問を持ち、新しいやり方を試すことに積極的であることである。スマート・クリエイティブが大きな影響を持ちうるのはこうした理由からである。

人材

ラーニング・アニマルを採用する

・『あなたの会社の従業員について考えてみよう。自分より優秀だと心から思えるのは誰か。チェスやクロスワードで対戦したくない相手は? 自分より優秀な人間を採用せよ、という格言があるが、どれだけ実行できているだろう。

この格言はいまも妥当性を失っていないが、その意味は考えられている以上に深い。もちろん優秀な人はいろいろなことを知っていて、凡庸な人より高い成果をあげる。ただ、大切なのは優秀な人が「何を知っているか」ではなく、「これから何を学ぶか」だ。

・『ヘンリー・フォードは「人は学習を辞めたときに老いる。20歳の老人もいれば、80歳の若者もいる。学びつづける者は若さを失わない。人生で何よりすばらしいのは、自分の心の若さを保つことだ」と言った。グーグルが採用したいのは、ジェットコースターを選ぶタイプ、つまり学習を続ける人々だ。彼ら“ラーニング・アニマル”は大きな変化に立ち向かい、それを楽しむ力を持っている。

・心理学者のキャロル・ドゥエックは、これ[ラーニング・アニマル]を別の言葉で表現する。それは「しなやかマインドセット」である。

しなやかマインドセットの持ち主は、努力すれば自分の持ち味とする能力を変えたり、新たな能力を開花させることができると考える。人は変われる。適応できる。むしろ変化を強いられると、心地よく感じ、より高い成果をあげられる。

・しなやかマインドセットの持ち主は「学習目標」を設定する。学ぶこと自体が目標になると、くだらない質問をしたり、答えを間違えたりしたら自分がバカに見えるのではないかなどと悩んだりせず、リスクをとるようになる。ラーニング・アニマルが目先の失敗にこだわらないのは、長い目でみればそのほうが多くを学び、さらなる高みに上がれることを知っているからだ。

・知力より専門能力を重視するのは、とくにハイテク業界では間違いである。あらゆる業界では急速な変化が起きており、昨日までの先端的プロダクトが明日には陳腐化するような時代に、スペシャリスト採用にこだわると裏目に出る可能性が高い。スペシャリストが問題を解決するとき、その手法には自分の強みとされる専門分野ならではの偏りが生じがちだ。優秀なゼネラリストには偏りがなく、多様なソリューションを見比べて最も有効なものを選択することができる。

イノベーション

自らとりまく環境を理解する

・『グーグルXチームは新しいプロジェクトに取り組むかどうか決めるとき、ベン図を使う。まず、それが対象としているのは、数百万人、数十億人に影響をおよぼすような大きな問題あるいはチャンスだろうか。第二に、すでに市場に存在するものとは根本的に異なる解決策のアイデアはあるのか。グーグルは既存のやり方を改善するのではなく、まったく新しい解決策を生み出したいと考えている。そして第三に、根本的なる解決策を世に送り出すための画期的な技術は(完全な姿ではなく、部分的なかたちでも)すでに存在しているのか、あるいは実現可能なのか。』

・「プロジェクト・ルーン」とは、インターネットへのブロードバンド接続環境のない数十億人に、ヘリウム気球を使ってそれを提供しようというプロジェクトだが、これは先に挙げた三つの条件をすべて満たしている。すでに存在する、あるいは十分実現可能な技術を使って、とほうもなく大きな問題をこれまでとは劇的に違うやり方で解決しようとするものである。グーグルXチームはまず新たなプロジェクトのアイデアが三つのパラダイムをすべて満たすか確かめ、満たさないものは却下する。

・イノベーションが生まれるには、イノベーションにふさわしい環境が必要である。イノベーションにふさわしい環境とは、急速に成長しており、たくさんの競合企業がひしめく市場である。

・まったく新しい、ライバルがやってこない“未開の地”は、企業の成長を維持するだけの規模がない。イノベーションのための環境を望むなら、成長の余地の大きな巨大市場を探したほうが良い。

技術は検討すべき要素である。その分野の技術はどのように進化していくか。現在との違いは何か、そして他にはどんな違いが生まれるか。その進化する環境のなかで、持続的に他社との明確な違いを出していくための人材はそろっているか。これらもイノベーションの環境にとって大切である。

ベン図
ベン図

こちらが、ベン図です。

できるネット」さまより拝借しました。

良い失敗をする

『「世に出してから手直しする」アプローチの成功例がグーグル・クロームだとすれば、代表的な失敗例は2009年に華々しく登場したグーグル・ウェーブである。』

・ウェーブは大失敗だった。しかし、失敗が明らかになってから追加投資をしなかった。また失敗によって敗者の烙印を押された社員はいなかった。ウェーブ・チームメンバーはプロジェクトの打ち切り後、社内でひっぱりだこになった。限界に挑戦するようなプロジェクトに取り組んだからである。

・ウェーブは失敗する過程で、たくさんの貴重な技術を生み出した。ウェーブのプラットフォームの技術はグーグル・プラスやGメールに取り入れられている。失敗ではあったが、ウェーブは“良い失敗”だった。

・イノベーションを生み出すには、良い失敗のしかたを身に着ける。どんな失敗プロジェクトからも、次の試みに役立つような貴重な技術、ユーザ、市場の理解が得られるものである。アイデアは潰すのではなく、形を変えることを考える。

・世界的イノベーションの多くは、まったく用途の異なるものから生まれている。だからプロジェクトを終了するときには、その構成要素を慎重に吟味し、他の何かに応用できないか見きわめる必要がある。

・『ラリーがよく言うように、とびきり大きな発想をしていれば、完全な失敗に終わることはまずない。たいてい何かしら貴重なものが残るはずだ。そして失敗したチームを非難してはいけない。メンバーが社内で良い仕事に就けるようにしよう。他のイノベーターも、彼らが制裁を受けるかどうか注目している。失敗を祝福する必要はないが、ある種の名誉の印と言っていいだろう。少なくとも挑戦したのだから。』

経営者の仕事は、リスクを最低限に抑えたり、失敗を防いだりすることではない。リスクをとり、避けられない失敗に耐えられるだけの強靭な組織をつくることである。

・おそらく最も難しいのは、失敗のタイミングを見きわめることである。良い失敗は決断が早い。プロジェクトが成功しないと判断したら、リソースのさらなる浪費や機会損失を避けるため、なるべく早く手を引くべきである。ただし、イノベーティブな会社の顕著な特徴は、優れたアイデアに成熟する時間をたっぷり与えることである。自動運転車やグーグル・ファイバー(家庭で最大1ギガビットのブロードバンド接続を可能にする。現在のアメリカの平均的な家庭用回線のおよそ100倍に相当)のようなプロジェクトは、莫大な収益をもたらす可能性があるが、おそろしく時間がかかる。

・『ジェフ・ベゾスもこう言っている。「時間軸を伸ばすだけで、それまで考えもしなかったようなプロジェクトに取り組めるようになる。アマゾンではアイデアを5年~7年で実現したいと考えている。ぼくらは積極的にタネをまき、育てようとするし、しかもとびきり頑固だ。ビジョンについては頑固に、細部については柔軟に、が合言葉さ」 』

・失敗はすばやく、ただし時間軸はとびきり長く、ということである。そのために大切なことは、手直しをできるかぎり速くすること、そして手直しするたびに、自分が成功に近づいているか判断する基準をつくっておくことである。小さな失敗は当然起こるだろうし、許容すべきである。それが進むべき正しい道を示してくれることもある。

・失敗が積み重なり、どうにも成功への道筋が見えないときは、おそらく潮時と考えた方が良い。

相田みつを先生の『にんげんだもの』より

一生勉強一生青春
一生勉強一生青春

”ラーニング・アニマル”と聞いて、こちらの書を思い出しました。

ブロックチェーン

ビットコインなる仮想通貨には全く興味はなかったのですが、そのビットコインの仕組みに使われている“ブロックチェーン”というテクノロジーは、画期的なものらしいということ知りました。「インターネット以来の最大の発明だ」という人までいるようです。

約29年勤めていた会社はHP(ヒューレット・パッカード)というIT企業です。もっぱら営業担当だったため、技術そのものにはほとんど興味はありませんが、IT業界の動向については今も関心がありますは、これにはIT企業の株式を少々保有しているという裏事情もあります)。

そこで、このような新しいビジネスチャンスに対し、明確な戦略メッセージを周知徹底されるIBM社のホームページをのぞいてみることにしました。そして、この“ブロックチェーン”が極めて有望なものであるということを理解しました。これは“中抜き”によるコストと時間と多様性に対するビジネスチャンスということだと思います。

知りたいことは、「ブロックチェーンの何が優れているのか」と「どんなビジネス機会が想定されるのか(実現可能性)」の2つです。

思っていたとおり、数多くの本が出版されていたのですが、この本は著者の中島先生が中央銀行である日本銀行に長く勤務され、特に「決済システム」にも関わっていたという点に惹かれました。発行が2017年10月と他の本に比べるとそれ程新しくないためか、中古本価格が安かったのも助かりました。

著者:中島真志
アフター・ビットコイン

著者:中島真志

出版:新潮社

発行:2017年10月

大きな目次は以下の通りです。

序章 生き残る次世代通貨は何か

第1章 謎だらけの仮想通貨

第2章 仮想通貨に未来はあるのか

第3章 ブロックチェーンこそ次世代のコア技術

第4章 通貨の電子化は歴史の必然

第5章 中央銀行がデジタル通貨を発行する日

第6章 ブロックチェーンによる国際送金革命

第7章 有望視される証券決済へのブロックチェーンの応用

「はじめに」の後半に、著書である中島先生の経歴のお話が出ていますので、最初にそれをご紹介します。

『著者は、長らく日本銀行に勤務し、リサーチ関連の仕事を多く経験しました。その中で「決済システム」に出会い、大学教授への転身後もライフワークとして調査研究を続けてきています。日本銀行時代には、金融研究所で「電子現金」の研究に携わり(詳しくは本論でどうぞ)、国際決済銀行(BIS)に出向の際は、決済に関するグローバルなルール作りに携わりました。この間、資金決済、証券決済、外為決済、SWIFTなどについての著書を刊行し、いずれも金融関係者に広く読んで頂いています。こういった経歴から、わが国における決済分野の有識者の一人として、金融庁の審議会や全銀ネットの有識者会合などにも数多く参加してきました。』

ブログは「第3章 ブロックチェーンこそ次世代のコア技術」からになりますが、その第3章の中にある、“③ブロックチェーンが主役の世界へ” の説明に使われている図を見て、今後の目指す方向性が見えました。

ビットコインとブロックチェーンの関係
ビットコインとブロックチェーンの関係

画像出展:「アフター・ビットコイン」

以下は図の説明です。

『ビットコインなどの仮想通貨が、従来の金融の本流から少し離れた、いわば周辺部分におけるイノベーションであるのに対して、ブロックチェーンは、金融の中核を成すメインストリームの業務のあり方を大きく変えようとしているのです。

ここに来て金融業界では、「ブロックチェーンが主役になる」という認識が共有されつつあり、この技術をどの分野に応用していくかが中心的な課題となっているのです。ビットコインは、あくまでもブロックチェーンの最初の実用例であって、また特殊な適用例の一つにすぎないとの見方に変わってきています。すなわち、「ビットコイン中心の世界」から、「ブロックチェーンが主役の世界」へ移行してきており、当初のビットコインの導入段階からは、主客が完全に逆転しているのです。

ブロックチェーンの応用分野は、幅広い分野が想定されており、このうち、①仮想通貨に応用する場合を「ブロックチェーン1.0」②金融分野(仮想通貨以外)に応用する場合を「ブロックチェーン2.0」③土地登記、資産管理、商流管理、医療情報、選挙の投票管理などの非金属分野に応用する場合を「ブロックチェーン3.0」として分類するようになっています(図表3-1)。』

次も第3章からになります。ポイントと感じた部分を書き出しました。

1.ブロックチェーンとは

●ビットコインを支える中核技術として開発され、“オリジナル・ブロックチェーン”と呼ばれている。

●新たな進化系のブロックチェーンを総称して“ブロックチェーン技術”と呼んでいる。

データベースを保管するデータベースの技術である。

●“ブロック”と呼ばれる取引データの固まり一定時間ごとに生成し、時系列的に鎖のようにつなげていく。

過去の取引データを改ざんするためには、過去から最新のブロックまでをすべて改ざんする必要があり、二重使用や偽造などの不正取引を防止できる。 

画像出展:「経済産業省」

2.分散型台帳技術(DLT:Distributed Ledger Techonology)とは

“分散型台帳技術(DLT)に関して、中島先生は次のように補足されています。

『IT技術者以外の一般の方にとっては、そこまで[ブロックチェーンとDLTを]厳密に区別する必要は必ずしもなく、ブロックチェーンと分散型台帳管理(DLT)とはほぼ同義のものと捉えておけばよいでしょう。ブロックチェーンとDLTとは、「同じ技術を別の側面から呼んだもの」と考えておけばよいものと思います。』

●「ブロックを鎖状につなげて管理する」という技術面より「所有権データを分散型で管理する」というユーザ側の視点の方が金融業界では親しみやすく、その結果、金融業界では“分散型台帳技術(DLT)”という用語が前に出てきている。

中央型帳簿と分散型帳簿のイメージ
中央型帳簿と分散型帳簿のイメージ

画像出展:「アフター・ビットコイン」

3.ブロックチェーン/分散型台帳技術の特性

1)改ざん耐性(改ざんが困難であること)

●改ざんするためには、現在までのすべてのブロックを作り直す必要があり、かつその作り直しを正規のチェーンよりも早く成立させなければならない。これは事実上不可能である。(この重要なメカニズムは“ハッシュ値”というものに因る)

2)高可用性(低障害であること)

●ネットワーク上のコンピュータが同じデータを持ち合い、分散してデータを管理している。

●ネットワーク上のコンピュータが1台でも稼働していれば全体としてのシステムを維持できる。

クライアント・サーバ型とネットワークとP2P型ネットワーク
クライアント・サーバ型とネットワークとP2P型ネットワーク

右側のP2P(Point to Point)型がブロックチェーンの一般的なシステム構成になります。左側はサーバーが故障すると、システム全体が止まります。

画像出展:「アフター・ビットコイン」

3)低コスト(劇的なコスト削減ができること)

●取引や顧客に関する膨大なデータベースの維持、管理などに関わるコストを大幅に削減ができる。

●各金融機関どうしの帳簿の残高照合作業が不要になる。

●ユーザ側においても仲介者が不要になるため、迅速かつ低コストでの取引が可能になる。

4.ブロックチェーンの種類

●ブロックチェーンには誰でも参加できる「オープン型」と特定の参加者のみの「クローズド型」がある。

●「オープン型」は「パブリック型」とも呼ばれている。ビットコインは「オープン型」である。

●「クローズド型」は「プライベート型」や「許可型」とも呼ばれている。

●「クローズド型」は参加を許可する段階で、参加者の身元は明らかになっている(匿名性なし)。

●「クローズド型」には全体を管理・運営する中央の管理主体が存在する。

オープン型とクローズド型のブロックチェーンの比較
オープン型とクローズド型のブロックチェーンの比較

画像出展:「アフター・ビットコイン」

5.コンセンサス・アルゴリズム

●「コンセンサス・アルゴリズム」とは「合意形成の手法」と言われており、分散したデータベース上に多数存在する台帳情報を、ネットワーク上の全員で共有するための手法である。

●「コンセンサス・アルゴリズム」の方法は、オープン型とクローズ型で異なるが、これはオープン型が「悪意の参加者」の存在を前提にする必要があるのに対し、クローズド型では「許可された参加者」だけが対象になるからである。

●主なコンセンサス・アルゴリズム

主なコンセンサス・アルゴリズム
主なコンセンサス・アルゴリズム

表の上から3つ(プルーフ オブ ワーク[PoW]、プルーフ オブ ステーク[PoS]、プルーフ オブ インポータンス[PoI])は悪意のある参加者がいることを前提に、厳格な方式で不正を排除している仕組みになっています。

画像出展:「アフター・ビットコイン」

6.代表的なブロックチェーン

1)リナックスが進める「ハイパーレッジャー・ファブリック」

●「ハイパーレッジャー・ファブリック」は“リナックス・ファウンデーション”が開発しているブロックチェーンであり、金融業界向けのブロックチェーンとしての標準化を志向している。

●独自のコンセンサス・アルゴリズム(PBFT系)やメンバーシップ管理の仕組みを含んでいる。

●金融以外にも、製造、保険、不動産契約、IoT、ライセンス管理、エネルギー取引などでの応用を志向している。

●オープンソース(無償で一般公開)のため、誰でもそのソフトウエアの利用、改良ができる。

こちらは“リナックス・ファウンデーション”のサイトにあるものです。

Forbes Blockchain 50”の半数がHyperledgerを使っているということが書かれたページです。

こちらはForbesのサイトです。アルファベット順に50社が紹介されています。

 

こちらは“ブロックチェーンオンライン”さまのハイパーレッジャーに関するご説明です。

『Hyperledgerは、ブロックチェーンの技術を仮想通貨に限らず最大限に利用することを目的として生まれたブロックチェーン技術の推進コミュニティーです。プロジェクトの立ち上げにあたってLinuxOSの普及をサポートする非営利の共同事業体であるLinux Foundationが中心となり、オープンソースの理念から世界中のIT企業が協力して、ブロックチェーン技術の確立を目指しています。』

こちらのブログの中に、少し古いですがLinuxに関する現状が載っていました。一部をご紹介します。これを見るとLinuxはOSS(Open Source Software)のリーダーという感じですね。

●In 2018, Linux ran on 100% of the world’s 500 supercomputers.

●In 2018, Android (based on Linux) dominated the mobile OS market with 75.16%.

85% of all smartphones run on some version or derivative of Linux.

上記の”WEBSITE PLANET"は”Find a solution for your website”となっており、”Website Builders"もありました。

2)R3コンソーシアムが進める「コルダ」

●R3は米国の技術系企業である。

●金融業界向けに特化した分散型台帳管理技術を開発する。

こちらはコルダのサイトですが、参加企業のロゴが全て掲載されています。数えてみたら178社でした。(2019年5月3日時点)

7.金融分野におけるブロックチェーンの実証実験

1)国際送金における応用

『国際送金は、これまで相手先への着金までに時間がかかることや、手数料が高いといった問題点があったため、ブロックチェーンの技術を使ってこれらを克服し、国際送金を「早く、安く」行おうとする動きがみられます。』

国際送金システム「SWIFT」がブロックチェーン企業R3と提携 XRP対応の決済アプリ「Corda Settler」統合へ”という2019年1月31日付けのBD by BITDAYSさまの記事です。

なお、SWIFTとは Society for Worldwide Interbank Financial Telecommunicationの略で、国際銀行間通信協会になります。 

私自身の話になりますが、HPの営業時代に銀行さまを担当していたことがあり、このSWIFTという用語は国際決済の代名詞のように使われていました。「思い出します。懐かしい」。(日本語サイトです)

2)証券決済における応用

『国際送金と並び、証券決済の分野もブロックチェーンの応用として脚光が当たっています。株式や債券といった証券の決済は、現状では、多くの当事者が関係する複雑なプロセスになっていますが、ブロックチェーンを利用することによって、こうしたプロセスを大幅に合理化し、コストを削減できるのではないかとの機運が盛り上がっています。』

付記1:総務省 自治体ポイントに関する検討会 2018年4月11日 資料3

クリック頂くと、PDFの資料がダウンロードされます。こちらの資料、”ブロックチェーンの将来性と応用分野” は中島先生によるものです。今回ご紹介した『アフター・ビットコイン』がベースになっていますが、書式がスライドタイプなので見やすいと思います。ご参考にして頂ければと思います。

付記2:HPE opens new headquarters in north San Jose

日本では『平成』最後の日となった2019年4月30日に、HPE(旧HPから分社した会社で主に企業むけのシステムやサービスを提供。辞めていなければHPではなく、こちらのHPE側にいたというところです)の新しい本社がオープンしたそうです。グッドタイミングだったので貼りました。

Hewlett Packard Enterprise
Hewlett Packard Enterprise

すいません。英語のままです。

Hewlett Packard Enterprise employees gather next to the new HPE headquarters at 6280 America Center in San Jose. Hewlett Packard Enterprise on Tuesday unveiled a gleaming new office building in north San Jose, bringing a world-class tech company's headquarters into the Bay Area's largest city.

画像出展:「mercurynews

Hewlett Packard Enterprises CEO Antonio Neri
Hewlett Packard Enterprises CEO Antonio Neri

左から2番目がCEOのAntonio Neriです。

Hewlett Packard Enterprises CEO Antonio Neri (L), San Jose City Councilman Lan Diep (C) and San Jose Mayor Sam Liccardo (R), take a selfie with Hewlett Packard Enterprises employees during the grand opening of the new HPE headquarters in north San Jose. Hewlett Packard Enterprises on Tuesday unveiled a gleaming new office building in north San Jose, marking a new tech headquarters for the Bay Area's largest city.

追記:2022年2月16日

HPEの本社は2022年春にヒューストンのCity Placeに移転するそうです。

個人的には、HP流垂直統合の”HPE GreenLake”を応援しています。

Springwoods Village is now City Place.
Springwoods Village is now City Place.

Hewlett Packard Enterprise (NYSE: HPE) said its new headquarters in City Place in the Spring area opened for employees on Feb. 14, and the company plans a grand opening celebration “in a month or two.”

画像出展:「yahoo! finance」 

【YHP】

ホームページの「その他」→「参考図書」のページにガレージらしき写真を、何の説明もつけずにポンと置いていますが、それについてお話したいと思います。
この写真のタイトルは「Rules of the Garage」といい、1999年当時、米国ヒューレット・パッカード社(HP社)の新CEOであったカーリー・フィオリナが、創業者のビル・ヒューレットとデイブ・パッカードが築いたHP Wayの精神を再考し、あらためて行動規範としてまとめたものです。

原点であるHP Wayはビル・ヒューレットが語った次の言葉が象徴的であるといわれています。
それは、「信頼と尊厳。社員は男女を問わず誰でも良い仕事、創造的な仕事をしたいと思っている。それに相応しい環境におかれれば、誰でもそうする。会社は本当に社員が働きやすい環境・制度を整備する。社員はそうした会社の姿勢に応えるべく責任と義務を要する。」
というものです。なお、二人が使った創業当時のガレージは米国ITの象徴ともいえる、シリコンバレー発祥の地として「史跡」に指定されています。
HP WayはHP社で働く者にとっては、DNAともいうべき考え方ですが、私が最も印象に残り、判断や行動の拠り所として、心に置いていたのはHP Wayではありません。

それは会社説明会で渡された会社案内のトップページに書かれていた、「One for all, all for one」でした。今でこそ有名ですが、34年前の自分にはとても新鮮で、何故かハッとさせられたという記憶があります。
ラグビーでよく使われる言葉だということを知り、その意味するイメージを深く理解できたと思います。仕事が楽しく、前向きに取り組むことができたのは、この言葉を大切にしてきたからではないかと思っています。
そして、この言葉は入社当時の人事部長で、56歳という若さで他界された木本建治さん、早稲田大学ラグビー部OBで1987年の日本選手権では、監督として社会人の強豪東芝府中を撃破し、大学最後の優勝監督となった木本監督を思い出します。

日本選手権を大学勢が優勝する最後の大会になったと思います。
1987年ラグビー日本選手権、木本監督率いる早大が優勝!

ずいぶんと日焼けしてしまいましたが、貴重な1冊です。

最初の勤務地です。懐かしい~!
杉並区高井戸の「HPストリート」

写真はtownphoto.netさまより拝借。2010年5月撮影のようですが、この「HPストリート」の風景は1980年代当時と変わらないように思います。