ファシアの基礎

ファシアについては、『人体の張力ネットワーク 膜・筋膜 最新知見と治療アプローチ』という本で勉強しました。その時のブログは“経絡≒ファシア”というタイトルで12個に分けてアップしました。“経絡≒ファシア12”はその「まとめ」になっています。

今回の専門雑誌、『臨床 スポーツ医学』の2020年2月 Vol.37は、“Fasciaを考える―基礎から臨床応用まで―”を特集しています。これを拝読すると私のファシアの知識はまだまだ薄っぺらなものだと痛感します。そこで少しでも知識に厚みをつけたいという思いで、ファシアの基礎を中心に勉強しました。

ブログで取り上げたのは目次の黒字部分、「Fasciaとは―解剖生理学的意義の見地から」と「Fasciaとは―運動器超音波診療の見地から」の2つになりますが、全ての項目を含んではおりません。

特集”Fasciaを考える ー基礎から臨床応用までー
特集”Fasciaを考える ー基礎から臨床応用までー

特集編集:熊井 司

出版:文光堂

発行:2020年2月

目次

Fasciaとは-各分野での捉え方-

●Fasciaとは―実態・言語・歴史の見地から

●Fasciaとは―皮下組織に注目した解剖学的見地から

Fasciaとは―解剖生理学的意義の見地から

Fasciaとは―運動器超音波診療の見地から

●Fasciaとは―スポーツ診療の見地から

●Fasciaとは―セラピストの見地から

●Fasciaとは―西洋医学と東洋医学の架け橋として

エコーガイド下Fasciaハイドロリリースのための基礎知識

●疼痛の発症機序―Fasciaはどのように関与するか

●エコー所見から見たFasciaの病態

●エコーによるFasciaの弾性評価

●エコーガイド下Fasciaハイドロリリースを実践するための基本

エコーガイド下Fasciaリリースの実際

●肩関節の可動域制限と肩こり

●肘外側部痛

●Thumb pain syndrome [母指痛症候群] 

●腰殿部痛

●膝関節痛

●変形膝関節症

●アキレス腱症・アキレス腱付着部症

●足底腱膜障害

Fasciaとは―解剖生理学的意義の見地から  畿央大学大学院健康科学研究科 今北英高、祐實泰子

はじめに

・ファシアは解剖実習や手術の手順の中で、取り除かれていた不要な組織に分類されていた。しかし、最近の研究においてファシアは大変大きな役割を持っていると考えられている。

・2018年のTheiseらの研究では、「間質」には衝撃緩衝材としての機能に加え、間質を満たしている間質液には細胞が発するシグナルを伝達する役割や、がん細胞の拡散への影響も指摘されている。 Benias PC, et al: Structure and distribution of an unrecognized interstitium in human tissues. Sci Rep8: 4947,2018

・Coffyらの研究チームは、4年間にわたって腸間膜が臓器の1つである証拠を集め、2016年に論文として発表した。

Fasciaとは何か? その定義は?

・ファシアの定義は国際的にも議論中であり、いくつかの定義候補が挙げられている。その中で、社団法人日本整形内科学研究会の定義は次のようなものである。『「筋膜 myofascialに加えて腱、靭帯、神経線維を構成する結合組織、脂肪、胸膜、心膜など内臓を包む膜など骨格筋と無関係な部位の結合組織を含む概念」としており、2019年4月時点では、「ネットワーク機能を有する“目視可能な線維構成体 macroscopic anatomical structures forming of fibrils”」と定義している。

Fasciaの解剖学的見解

・ファシアは脂肪組織、外膜および神経血管鞘、腱膜、superficialおよびdeep fascia、髄膜、筋膜連続体、骨膜、網膜、中隔、腱、内臓ファシア、および全ての筋内膜、筋周膜、筋外膜を含む筋間結合組織などを包含する。

・筋肉やその他の臓器に対して、付着したり、包み込んだり、区別したりするための皮下に形成される鞘状、シート状、もしくは解剖可能な集合体の結合組織である。

・ファシアは表層と深層の2つの層に分かれている箇所と、そうでない箇所がある。

表層にあるファシア、“superficial fascia”は皮下に存在している。皮下組織に連続する脂肪を含んだ疎性結合組織には神経、動脈、静脈、リンパ管などが走行している。一方、深層にあるファシア、“deep fascia”は骨格筋だけでなく、血管、リンパ管、骨、そして臓器を包み込んでいる。“deep fascia”は主に密性結合組織に分類され、比較的強靭なⅠ型コラーゲン線維と弾性に富むエラスチンを含む。

ファシアは局在性によって異なり、2層のファシアが存在する部位と存在しない部位がある。

Fasciaの生理学的見解

1.Fascia systemとしての考え方

・fascia systemは身体に拡がる柔軟でコラーゲンを含む、疎性および密性の線維性結合組織の三次元連続体で構成される。また、全ての臓器、筋肉、骨、神経線維を相互に貫通して取り囲み、身体に機能的な構造を与え、全ての身体システムが統合的に動作できる環境を提供している。

・ファシアは皮下にある連続した結合組織の全身ネットワークである。

ファシアの破綻は障害のある部位にとどまらず、他の部位の障害を引き起こす可能性がある。

2.Fasciaと臓器の関係

ファシアは骨格系への支持機能だけでなく、内臓の機能がスムーズに働くことを助けている

ファシアは臓器間の境界として、臓器が潤滑に動けるために表面を覆い、臓器を結合し正しい位置に固定する役割もある。

ファシアの三次元的な構造と特異的な生理作用によって外力を吸収し、それをうまく分配することにより組織や臓器への外傷を防ぐ。

・手術では浅層の脂肪組織やsuperficial fasciaを保持することは、術後の早期回復に寄与するといわれている。

3.Fasciaと神経、血管との関係

・ファシアの中を走行する神経、血管、リンパ管などは、周りをファシアで覆われることにより、保護と方向性が与えられている。

・身体の姿勢はファシアの張力によって保持されているともいえる。

ファシアは身体を区画に分けることによって体外からの病原菌が素早く拡散するのを防ぐ。このようにファシアは生体防御システムに関しても重要な役割を担っている。

Fasciaの分子生物学的見解

・ファシアに存在する主要なタンパク質はタイプ1のコラーゲン線維で、主に線維芽細胞がタンパク質の生合成や再構築において重要な働きをしている。

ファシアに存在する線維芽細胞は、細胞間のギャップ結合を通じて情報をやり取りし、神経系のように身体全体で機械感受性のシグナルを伝達していると考えられている。

Langevin HM, et al: Dynamic fibroblast cytoskeletal response to subcutaneous tissue stretch ex vivo and in vivo. Am J Physiol Cell Physiol 288: C747-C756, 2005

Langevin HM: Connective tissue: a body-wide signaling network? Med Hypotheses 66: 1074-1077, 2006

Benjamin M: The fascia of the limbs and back? A review. J Anat 214: 1-18, 2009 

細胞骨格と細胞外基質の連絡
細胞骨格と細胞外基質の連絡

画像出展:「人体の正常構造と機能」

この図のタイトルは”細胞骨格と細胞外基質の連絡”です。細胞外基質とは細胞外マトリックスのことです。中央やや左下に”ギャップ結合”が出ています。

『細胞が集まって組織を作ると、細胞を互いにつなぐ細胞結合が必要になってくる。また、組織として、運動したり、外力に抵抗して形を保つために、細胞の形を支持する細胞骨格や、細胞の間を埋める細胞外基質の働きが必要になってくる。』

細胞結合の種類
細胞結合の種類

画像出展:「人体の正常構造と機能」

ギャップ結合[中央]は、平滑筋細胞や神経細胞など多くの細胞にみられ、細胞間の情報伝達や物質移動に役立つ結合である。細胞内に埋め込まれたコネキシンという蛋白質が集まって小孔の開いた粒子を作り、隣り合う細胞の粒子がつながって、細胞間を連絡する通路を作る。ギャップ結合は、イオンやアミノ酸のような低分子を通すので、細胞の興奮や細胞内情報伝達の働きが隣の細胞に伝えられる。

 1.張力の調整

・ファシアが引き伸ばされると線維芽細胞は形態を変化させ、細胞マトリックスの面積を拡大しファシアにかかる張力を和らげている。

ファシアに存在する線維芽細胞は、それぞれ機能的にも代謝的にも異なる性質を持ち、その多くは身体の浅層に位置し、深層では疎性結合組織に存在する。

・線維芽細胞は存在する場所により性質を変化させ、ファシアの伸展に対し異なる反応をする。

・疎性結合組織の線維芽細胞は張力に対して、細胞骨格の再構築で対応するが、密性結合組織内では細胞骨格の再構築は起こりにくい。

線維芽細胞に伝わる機械的な刺激は、その性質や方向性、刺激時間の変化などが言語のように細胞に伝わり(機械的シグナル伝達)、細胞内に様々な変化を引き起こす。 

線維芽細胞が分泌する物質
線維芽細胞が分泌する物質

画像出展:「臨床 スポーツ医学」

中央が線維芽細胞です。周りの⇒が分泌される物質です。

 

・我々の身体は常に生理的負荷や機械的刺激を受けており、それらの負荷や刺激が遮断されると萎縮が起こる。逆に負荷が掛かりすぎると肥大が起こる。

・腱の損傷では細胞マトリックスが損傷を受け、その構造に脆弱な部分が生じると組織の緊張が高まり、過度な力が周辺の線維芽細胞に働くことで組織の炎症や分解を引き起こす。また、細胞死も誘導すると考えられている。

結合組織は機械的な刺激の性質に応じて、そこに存在する細胞にシグナル伝達を伝え、その結果、結合組織の変化も誘導する。

2.間質圧の調節

・線維芽細胞が存在する疎性結合組織は、コラーゲンがメッシュ状に不規則に並んでおり、透明で粘性のあるゲル状の物質であるグリコサミノグリカン(硫酸ムコ多糖類)が存在し、大量の水を含むことが可能である。

炎症が起こると分泌される物質により、細胞マトリックスと線維芽細胞の接触が壊され水が浸透できるようになる。水は電気的に負に荷電しているグリコサミノグリカンに引きつけられることで、大量に細胞外マトリックス(細胞外基質)に移動し組織を膨張させる。これが炎症時にみられる膨張である。

・ファシアに過度な張力が掛かると、炎症と同様に細胞マトリックスと線維芽細胞のインテグリンとの間で接触が壊され、浸透によって細胞や毛細血管からの水分が細胞外マトリックスに移動するが、ファシアの張力が元に戻ると、細胞は元の形となり接触も再形成される。

3.細胞外マトリックスの調節

・線維芽細胞は細胞外マトリックスの分解、産生に関わることで間接的にファシアの連続性を保つために働き、その機能を決定している。

・線維芽細胞は分解機能をもつMMPs(マトリックス・メタロプロテアーゼ)や、その分解能を抑制するTIMPs(組織メタロプロテアーゼ)などがあり、この両者のバランスが組織の修復の際の重要なカギとなる。また、線維芽細胞はこれら以外にもTGF-β1やFGFといった細胞の代謝や増殖に重要なホルモンも分泌している。

・免疫反応においては、線維芽細胞は炎症作用に関わる多くのサイトカインやケモカインを産生する。これにより炎症性の環境を数時間で作り出すことができる。

線維芽細胞はファシアが受けているストレスに対して、ファシアの連続性の維持に重要な役割を担っている。

4.ヒアルロン酸の機能

・ヒアルロン酸はグリコサミノグリカンの一種で、ファシアでは線維性の層のスライドを促進する。また、結合組織の中で潤滑油のように働き、deep fasciaの機能を維持するのに貢献している。

Fasciaとは―運動器超音波診療の見地から  城東整形外科 都竹伸哉、皆川洋至

はじめに

・個体はすべて細胞からできており、同じ形や性質を持った細胞の集まりを組織(上皮組織・支持組織・筋組織・神経組織)、特定の機能を発揮する異なる組織の集まりを器官(骨・軟骨・筋・靭帯・脊髄・末梢神経・動脈・静脈・リンパ管など)、そして、同様の機能を発揮する器官の集まりを器官系(運動器系・神経系・循環器系など)と呼ぶ。ファシアは器官や組織を包むと同時に、器官同士を分離・結合する支持組織の一つである。見方を変えれば、ファシアの中に器官が点在するとも考えられる。

ハイドロリリースの臨床的価値

・X線検査、CT、MRIなどの画像から見つかるのは器官の構造異常であり、神経の構造異常や機能異常が見えるわけではない。

画像検査で異常が見つからない場合、患者の痛みを「心の問題」にしてしまうことがある。その一方で、腱板断裂や脊柱管狭窄など検査が見つかっても何も症状がない場合もある。これらは器官の構造異常が痛みに直結しないことを物語る。

痛みについては、組織、器官、器官系の構造異常、機能異常で生じることを再認識する必要がある。

・末梢神経周囲に等張液(生理食塩水、5%ブドウ糖液など)を注入すると、瞬時に痛みが消失してしまうことがある。ハイドロリリースでは正確に標的を捉えることが重要である。液体注入後の反応が大事な所見となり、病態の再考が病態の理解を深める。

・『もはや骨で痛みの病態を解釈する時代ではない。血管や筋肉との相互作用を意識し、末梢神経で痛みの病態を理解する時代になっている。』

末梢神経の超音波解剖

末梢神経の階層構造
末梢神経の階層構造

画像出展:「臨床 スポーツ医学」

末梢神経の最小単位が神経線維(axon)で、これを神経内膜(endoneurium)が包む。神経線維が複数集まったものが神経線維束(fascicle)で、これを神経周膜(perineurium)が包む。神経線維束が複数集まったものが神経幹(trunk)で、これを神経上膜(epineurium)が包む。神経上膜は、神経周膜の間を埋めるinternal epineuriumとその外側を覆うexternal epineuriumに分かれ、external epineuriumの外をparaneurium

が包む。

間質とハイドロリリース

細胞外、血管外にある空間は間質と呼ばれている。ここは細胞と毛細血管が物質交換を行う場所である。

・末梢神経周囲の水分環境が変化するメカニズム、水分環境の変化がparaneuriumの構造・機能に与える影響、そして疼痛との関連が明らかになれば、ハイドロリリースのメカニズム解明に一歩近づくことになる。

東洋医学とFascia

都竹先生、皆川先生はいずれも城東整形外科の先生ですが、東洋医学(中医学)について、とても簡潔で分かりやすいご説明をされていました。

・『東洋医学に「気・血・水」、「五臓六腑」、「経絡」という概念がある。「気・血・水」の“気”は生命活動を維持するエネルギー、“血”は食物から消化吸収された栄養分、“水(津液)は全身に潤いを与える水分を意味する。「五臓六腑」の五臓は肝・心・脾・肺・腎、六腑は胆・小腸・胃・大腸・膀胱・三焦を示す。五臓は気・血・水を蓄え、六腑は食物の消化吸収・排泄と水(津液)を全身に送る作用がある。西洋医学では内臓の【器官名】を指すが、東洋医学では機能や役割を含む【概念】であり、同じ言葉でも意味が多少異なる。気・血・水の通り道は「経絡」と呼ばれる。全身にエネルギーと情報を伝達する働きは、神経・血管と重なる部分がある。東洋医学の基本概念「気・血・水」、「五臓六腑」、「経絡」のうち、fasciaとの関連で興味深いのが六腑の一つ“三焦”である。三焦に相当する臓器は存在しないとする説や、臓器を包む胸腔・腹腔であるとする説など一定しないが、主な働きは間質の水分調節や物質移動とされる。三焦に相当する器官を明確にできなかった理由は、fasciaが関心領域の狭間にある構造物、言い換えれば臓器中心に専門分化し発展してきた西洋医学の弱点と関係がありそうである。』

ご参考:三焦「決瀆の官。水道これより出づ」

専門学校時代のノートを引っ張り出したところ、三焦に関するものを見つけました。

三焦は陰陽でみると”陽”であり、対比する”陰”は心包になります。また、私自身は三焦だけでなく、三焦を含む上位概念の”経絡”自体がファシアに極めて近い存在(経絡≒ファシア)だと思っています。

なお、ノートに書かれていた内容は次の通りです。

三焦は特定の器官を指すのではなく、飲食物を消化吸収し、これから得られた気血津液を全身に配布する。そして、水分代謝を円滑に行わせる一連の機能を指し、上焦、中焦、下焦に分かられる。三焦の働きは、体温調節、気血津液の調整作用、輸寫作用の三つにまとめることができる。(飲食物の流れは三焦が関与)

1.上焦

・横隔膜から上部の機能を指す。特に陽性の衛気を全身に巡らせることである。これにより皮膚を潤し、体毛に栄養を与え、体熱を産生し、体温を調節する。(心肺と関係)

2.中焦

・横隔膜から臍までの間の機能を指す。その働きは飲食物を胃の中で腐熟させ、そこから生じる精気を営気と血とし、経絡を介して全身に巡らせることである。(脾胃と関係)

3.下焦

・臍から下部の機能を指す。下焦の主な機能は糟粕に含まれる不要な水分を分離して、膀胱にしみ込ませることである。(腎・膀胱・小腸・大腸と関係)